Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Theoretical Evaluation of Thermal Decomposition of Dicholosilane for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride: The Important Role of Surface Hydrogen

Gregory Hartmann<sup>a</sup>, Peter L. G. Ventzek<sup>b</sup>, Toshihiko Iwao<sup>c</sup>, Kiyotaka Ishibashi<sup>c</sup>, and Gyeong S. Hwang<sup>a,#</sup>

Table S1. Selected geometric parameters of the hexagonal  $\beta$ -Si<sub>3</sub>N<sub>4</sub> unit cell using different dispersion corrections compared to experimental values<sup>1</sup>.

|                           | Volume (Å <sup>3</sup> ) | a (Å)  | c (Å)  | d <sub>Si-N</sub> (Å) |
|---------------------------|--------------------------|--------|--------|-----------------------|
| DFT                       | 149.1                    | 7.666  | 2.929  | 1.74                  |
| DFT-D3                    | 148.0                    | 7.647  | 2.922  | 1.74                  |
| DFT-D3BJ                  | 146.3                    | 7.617  | 2.910  | 1.73                  |
| experimental <sup>1</sup> | 145.81                   | 7.6093 | 2.9079 | 1.729                 |

The lattice parameters of the  $\beta$ -Si<sub>3</sub>N<sub>4</sub> unit cell were optimized using a hexagonal primitive unit cell, while all atoms were fully relaxed until residual force were below a tolerance of  $10^{-3}$  eV/Å. Periodic boundary conditions were imposed in all three directions. Geometric parameters obtained from standard DFT are compared to the method of Grimme (DFT-D3)<sup>2</sup> and the improved method including Becke-Johnson damping (DFT-D3BJ)<sup>3</sup>. The predicted crystal lattice parameters were found to agree with previous DFT-GGA<sup>4</sup> and experimental studies<sup>1</sup>. Interestingly, the lattice parameters predicted via DFT-D3BJ were very close to the experimentally measured values, despite the expected overbinding from the combination of the PBE functional and the DFT-D3BJ method<sup>3</sup>.

The choice of dispersion correction is most important in the estimation of the binding strength in the molecularly adsorbed configuration.  $E_b$  for a molecularly adsorbed DCS in the lowest-energy configuration was found to be 0.59 eV via DFT-D3BJ, close to  $E_b = 0.54$  eV obtained via DFT-D3. The activation barrier  $E_a = 0.27$  as predicted via DFT-D3BJ while DFT-

<sup>&</sup>lt;sup>a</sup>McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712

<sup>&</sup>lt;sup>b</sup>Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78744

<sup>&</sup>lt;sup>c</sup>S-Technology Development Center, Tokyo Electron Technology Solutions, Ltd., 650 Mitsuzawa, Hosaka-cho, Nirasaki City, Yamanashi 407-0192, Japan

<sup>#</sup>Author to whom correspondence should be addressed: e-mail: gshwang@che.utexas.edu

D3 predicted a slightly higher  $E_a$  of 0.32 eV. The results presented in this work were obtained from the DFT-D3BJ method as our primary interest will be  $E_a$  determined by the energy of the molecularly adsorbed state and the transition state where non-covalent interactions will be significant.

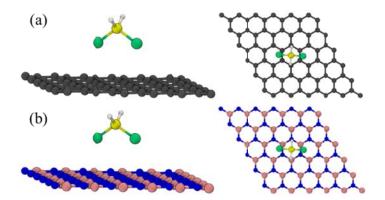



Figure S1. Side (left panels) and top (right panels) views for molecularly adsorbed DCS in the lowest energy configuration on graphene [(a)] and hexagonal boron nitride [(b)]. Green, yellow, white, black, blue, and pink balls represent Cl, Si, H, C, N and B atoms, respectively.

Two dimensional materials, particularly graphene (a = 2.466 Å via DFT-D3BJ) and hexagonal boron nitride (a = 2.508 Å), serve as single atomic layer thickness materials, providing a model where the magnitude of the dispersion correction (through  $E_b$ ) can be predicted without considering the convergence as a function of slab thickness. A 6 × 6 supercell of each material was prepared utilizing a 4 × 4 × 1  $\Gamma$ -centered k-point mesh and 15Å of vacuum to separate periodic sheets.  $E_b$  was predicted to be 0.25 eV in both cases.

Table S2. Binding strength ( $E_b$ ) of DCS molecularly adsorbed on the (2 × 2) H/NH<sub>2</sub>-terminated N-rich surface and dispersion correction energy ( $E_{disp}$ ) for varying slab thicknesses as predicted via DFT-D3BJ.

| Layers | $E_b$ (eV) | $E_{disp}$ (eV) |
|--------|------------|-----------------|
| 3      | 0.59       | -0.61           |
| 4      | 0.58       | -0.62           |
| 5      | 0.60       | -0.62           |
| 5      | 0.60       | -0.6            |

DFT-D3BJ predicts a correction to the dispersion energy based on pair-wise interactions between each atom. It is thus necessary to use a slab with enough depth so that the adsorbed

species interacts with a sufficient number of atoms in the regime of significant attractive dispersion forces to approximate a bulk surface.  $E_b$  was compared against varying slab thickness of a 2 × 2  $\beta$ -Si<sub>3</sub>N<sub>4</sub> slab featuring the H-saturated N-rich surface to ensure that the slab models included an adequate number of layers. The contribution of the DFT-D3BJ method ( $E_{disp}$ ) to  $E_b$  is presented alongside  $E_b$  in Table S2. Both converged within 4 slab layers, thus the slab models used in this study included 3 bulk layers for all calculations. Three slab layers correspond to a slab thickness of 5.3 Å; this would indicate that the pairwise dispersion interactions decline to a negligible strength within this maximum distance.

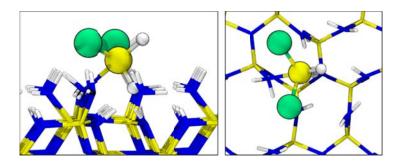
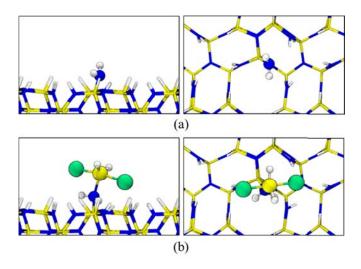
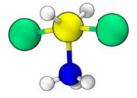


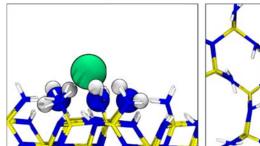

Figure S2. Side (left) and top (right) views of the transition state ( $E_a = 0.3$  eV) Green, yellow, and white balls represent Cl, Si, and H atoms, respectively.

Table S3. Selected geometric parameters of the transition state as predicted via DFT-D3BJ (DFT).

|       | d (Å)     |            | Angle           |
|-------|-----------|------------|-----------------|
| Si-NR | 2.1 (2.5) | ∠H-Si-H    | 97.5° (103.4°)  |
| NR-H  | 1.0 (1.0) | ∠Cl-Si-Cl  | 114.9° (116.3°) |
| Si-H  | 1.5 (1.5) | ∠Si- NR-Si | 137.5° (106.4°) |
| Si-Cl | 2.1 (2.1) |            |                 |





Figure S3. Side (Left) and top (right) views of (a) the alternative surface created by replacing all NH<sub>2</sub> groups with H and (b) the DCS-amine adduct on the surface. Green, yellow, blue, and white balls represent Cl, Si, N, and H atoms, respectively.


Table S4. Selected geometric parameters of the DCS-amine adduct on the surface as predicted via DFT-D3BJ.

|                   | d (Å) |           | Angle  |
|-------------------|-------|-----------|--------|
| Si-N <sup>R</sup> | 1.93  | ∠H-Si-H   | 129.1° |
| $N^R$ -H          | 1.02  | ∠Cl-Si-Cl | 169.4° |
| Si-H              | 1.47  |           |        |
| Si-Cl             | 2.24  |           |        |

Table S5. Selected geometric parameters of the gas-phase DCS- $NH_3$  adduct as predicted via DFT-D3BJ (DFT). ) Green, yellow, blue, and white balls represent Cl, Si, N, and H atoms, respectively.

|                   | d (Å)       |           | Angle           |
|-------------------|-------------|-----------|-----------------|
| Si-N <sup>R</sup> | 1.93 (1.93) | ∠H-Si-H   | 129.1° (129.1°) |
| $N^R$ -H          | 1.02 (1.02) | ∠Cl-Si-Cl | 169.4° (169.4°) |
| Si-H              | 1.47 (1.47) |           |                 |
| Si-Cl             | 2.24 (2.24) |           |                 |





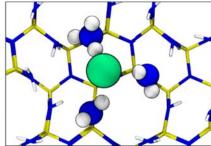



Figure S4. Side (left) and top (right) views of the ammonium complex on the N-rich  $\beta$ -Si<sub>3</sub>N<sub>4</sub> (0001) surface. Green, blue, and white balls represent Cl<sup>-</sup>, N, and H atoms, respectively, in – NH<sub>3</sub><sup>+</sup> and –NH<sub>2</sub>.

Table S6. Selected geometric parameters of the ammonium complex (in Fig. S4) as predicted via DFT-D3BJ.

| -    | d (Å)       |         | Angle                                 |
|------|-------------|---------|---------------------------------------|
| H-Cl | 1.89 (1.90) | ∠Cl-H-N | 173 <sup>° (</sup> 173 <sup>°</sup> ) |
| N-H  | 1.09 (1.09) | ∠H-N-H  | 105° (105°)                           |
| N-Si | 1.83 (1.83) |         |                                       |

The distance between H (of ammonium) and the chlroide anion of 1.89 Å demonstrates a distinct elongation compared to the distance between H and Cl of HCl(g), 1.28 Å as predicted via DFT-D3.

## References

- P. Yang, H. K. Fun, I. A. Rahman and M. I. Saleh, Two phase refinements of the structures of  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> and  $\beta$ -Si<sub>3</sub>N<sub>4</sub> made from rice husk by Rietveld analysis, *Ceram. Int.*, 1995, **21**, 137–142.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 0–19.
- S. Grimme, S. Ehrlich and L. Goerigk, Effect of damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- L. Huang, B. Han, A. Derecskei-Kovacs, M. Xiao, X. Lei, M. L. O'Neill, R. M. Pearlstein, H. Chandra and H. Cheng, Density functional theory study on the full ALD process of silicon nitride thin film deposition via BDEAS or BTBAS and NH3, *Phys. Chem. Chem. Phys.*, 2014, **16**, 18501–18512.