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SI-1. SAGE model construction.

Here we describe how the simplest model of the SAGE peptide nanostructure, comprised of 

a single layer of peptides was built. In order to form a closed sphere from a predominantly 

hexagonal (honeycomb) lattice of peptides 1-3 -we used the set of points on a sphere with 

icosahedral symmetry based on the work of Harding, Sloane and Smith and comprised the 

file http://neilsloane.com/ICOSC/icover.3.312.5.1.txt . A program was written to construct a 

hexagonal closed net containing 12 pentagons and corresponding Chimera bild format file 

(Figure SI.1). 

Figure SI-1. Left: 312 points on a sphere (red). Left centre: 1860 interpolated vertices (green); Right 
centre: vertices connected by edges (blue). Right: displaying only the edges (the net).

Polymerizing the acidic and basic hubs (as shown in Figure 1) to form a closed structure with 

all acidic and basic peptides matched requires at least one mixed hub at each of the 12 

pentagons. This requirement is best illustrated by running a Monte Carlo simulation and 

minimizing the objective function with a genetic algorithm where the objective is to minimize 

the number of mismatched hubs. A program was written to perform this task and the output 

with all pure acidic and basic hubs shows the line of non-matching hubs connecting pairs of 

pentagons (SI-2 panel A). Converting the mismatched hubs (at least 36) to mixed hubs allows 

perfect closure of the network (SI-2 panel B). The SAGE models were prepared by placing the 

appropriate acidic, basic and mixed hubs at the vertices of the network shown in using another 

bespoke program. 
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SI-2. SAGE simulation setup and production

Sequence information.

The sequences used in these simulations correspond to three of the standard SAGE 

constructs used in the Woolfson lab for biophysical and structural analysis towards medically 

or industrially relevant applications. 

Where Ac and nh2 refer to end capping N-terminal acetyl group and C-terminal amide groups 

added to reflect the chemically synthesized experimental constructs.

SI-2 Table 1  Molecular dynamics simulation trajectories acquired

System
Dimer N 
in/out

Proteins

/small 
molecules

Length 
(µs)

SAGE charge
Na+

Ions

Cl-

ions

Virtual 
sites (H)

Parent-SAGE-dim-o out N 0.1 +3720 38111 41831 N

Parent-SAGE-dim-i in N 0.1 +3720 38111 41831 N

Parent-SAGE-mols out Y 1.0 +3720 38514 42774 Y

K4-SAGE-mols out Y 0.6 +7440 36618 44598 Y

E4-SAGE-mols out Y 0.6 0 40338 40878 Y



Shoemark et al. Microsecond atomistic simulation of peptide nanocage 5

SI-2 Table 2. Small molecules and proteins added to the longer trajectories

Protein  

10 molecules

(40 µM)

PDB 

code

Charge residues Small molecule 

250 molecules

(1 mM)

Charge M. Wt.

FAB fragment 2FX7 +12 457 ATP -4 503

Superfolder GFP 2BP3 -3 228 Bipyridyl cisplatin 0 394

Spycatcher 4MLI -5 103 Carboxyfluorescein -1 375

Ubiquitin 1UBQ 0 76 Spermine +4 206

Leucine zipper 2ZTA 0 62 Methylgalactoside 0 194

Crambin 3NIR 0 46 Methylglucoside 0 194

Imidazolium +1 69

Imidazole 0 68

Magnesium +2 24

Simulation setup and production: This was performed using the GROMACS 4.6.74 suite 

of toolsx. Firstly, hydrogen atoms were added to the SAGE model consistent with pH 7, a cubic 

box was defined, at least 5 nm larger than the SAGE structure in each dimension, giving at 

least 10 nm between periodic images. The box was filled with TIP3P waters and 0.15 M 

sodium chloride. The system was parameterized with the amber99SB-ildn forcefield5. Short 

range electrostatic and van der Waals interactions were truncated at 0.14 nm and long-range 

electrostatics treated with the particle mesh Ewald method. An initial relaxation was performed 

by 10000 steps of steepest descents energy minimization. The dynamics were initialized at 

310 K under periodic boundary conditions for 4 ns while restraining the protein atoms to their 

original positions. The temperature was maintained at 310 K using the v-rescale thermostat 

and the pressure at 1 bar with the Berendsen barostat6. Twin temperature baths were used, 

one for the protein and the other for the water and ions. Bond constraints were applied to the 

water (SETTLE)7 and the protein (LINCS)8 to allow a 2 fs timestep for the leap-frog integrator. 

The simulations with protein and small-molecule solutes were configured with the virtual sites 

option, enabling a 5 fs timestep for the integration. Production simulations were performed 

under the same conditions, after removing the position-restraints. Structures were saved every 

0.1 ns in all simulations.

SI-3. Parallel performance

Molecular dynamics were collected on the UK HPC machine Archer, a Cray XC30 machine 

comprising 4929 nodes, each with two 12-core 2.7 GHz Intel E5-2607 CPUs, networked with 

an Aries interconnect. These large simulations (~42 million atoms) showed near linear scaling 

performance up to 3072 cores (128 nodes), falling off to ~80% efficiency at 6144 cores (256 
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nodes). A typical calculation would be run for 48 hrs on 3072 cores and generate about 7 ns 

(2 fs timestep) and 16 ns (5 fs timestep).

SI-4. Data analysis

The GROMACS4 analysis tools were used to process the raw trajectory files to remove 

periodic boundary artefacts and perform many of the standard analysis tasks such as 

measurements of RMSD, radius of gyration, energies etc. with respect to time and to extract 

solvent-free PDB-format files for further processing with bespoke analysis tools. 

SI-5 Gross structural changes of the SAGE in the simulations

A secondary structure plot for all simulations, showing any SAGE helix with less than 50% 

helicity at a given time point as a coloured spot, is presented in figure SI-5.1.
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Figure SI-5.1

Figure SI-5.1 shows as spots all the helices with less than 50% secondary structure for; for dimer N-out (cyan 
spots) and dimer N-in (orange spots) (0-100 ns in far-left panel); middle panel (time 0 – 1000 nanoseconds) for the 
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parent-SAGE (green spots) and the panel on the right (time 0 - 600 ns) for K4-SAGE (blue spots) and E4-SAGE 
(red spots). The spot density/size is such that the field would be completely filled with colour if all peptides had no 
secondary structure. (No colour at all would mean that all peptides had > 50% helix.)

Figure SI-5.2

Figure SI-5.2. Expanded view of the radius of gyration of the SAGE particle in the five simulations for: A) parent-
SAGE-dim-o (cyan); parent- SAGE-dim-i (brown). B) parent-SAGE-mols (green); K4-SAGE-mols (blue); E4-SAGE-
mols (red).

Figure SI-5.3 

Figure SI-5.3 shows in panel A, the change in volume associated with the rupture event (red line) and that this did 
not happen with a restart from the preceding checkpoint (blue line). Panel B shows there was also a dip in total 
energy (red line), over the same time-period as the increase in volume, that did not happen in the restart (blue). 

SI-6 Simulations with solutes

Protein solutes were parameterized in the same way as the SAGE, special residues for 

spycatcher (iso-peptide bond between D and K) and GFP (chromophore) were built by 

analogy. Small-molecule solutes were parameterized with GAFF, and GROMACS residue 

library entries built to facilitate the use of virtual sites for groups showing rapid rotational 

motions (e.g. methyl and hydroxy groups). Solutes were added to the simulation box in random 

positions and orientations on grids using BUDE and the box re-solvated. Ten molecules of 

each protein (~40 µM each) and 250 molecules of each small-molecule (~1 mM each) were 

added. All three simulations with solutes (parent-sage-mols, E4-sage-mols and K4-sage-mols) 

were set up with the GROMACS virtual site description of rapidly moving functional groups 
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enabling the use of a 5 fs timestep without compromising the behavior of the simulations. 

Simulation data acquired are shown in SI-Table 1.

SI-6.1 Ion passage in simulations

Figure SI-6.1.1  

Figure SI-6.1 showing the passage of ions, sodium (blue) and chloride (green) from the inside to the outside of the 
SAGE assemblies for E4-SAGE (panel A), parent-SAGE (panel B) and K4-SAGE (panel C).

Figure SI-6.1.2 
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Figure SI-6.2 showing the distribution of distances travelled by sodium (blue) and chloride (green) ions between 
each 0.1 ns saved structure from the parent-SAGE-mols simulation.
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SI-6.2 Small molecule passage in simulations

Figure SI-6.2.1
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Figure SI-6.2.1 shows the radial position (distance from the centre of the SAGE) of each of the 250 molecules 
of each small-molecule with time during the simulations. The black line is the average position of the SAGE skin. 
At time zero, all molecules inside the SAGE are coloured red, and all outside are coloured blue.
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SI-6.3 Heat-mapping protein solute contacts with SAGE 

Figure SI-6.3.1
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Figure SI-6.3.1 shows heat maps for each of the parent-SAGE residues contacting anywhere on each of the 
protein solute molecules.

Figure SI-6.3.2
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Figure SI-6.3.2 shows heat maps for each of the K4-SAGE residues contacting anywhere on each of the protein 
solute molecules.

Figure SI-6.3.3
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Figure SI-6.3.3 shows heat maps for each of the E4-SAGE residues contacting anywhere on each of the protein 
solute molecules.

Figure SI-6.3.4
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Figure SI-6.3.4 shows heatmaps for each residue type for the protein solutes (indicated on the left-hand y-axis) 
interacting with each residue type of the parent-SAGE. 

Figure SI-6.3.5
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Figure SI-6.3.5 shows heatmaps for each residue type for the protein solutes (indicated on the left-hand y-axis) 
interacting with each residue type of the K4-SAGE.

Figure SI-6.3.6 
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Figure SI-6.3.6 shows heatmaps for each residue type for the protein solutes (indicated on the left-hand y-axis) 
interacting with each residue type of the E4-SAGE.  

SI-6.4 Solute protein conformation and SAGE contact
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SI-6.4.1 RMSDs of solute proteins in the context of their contact with parent-SAGE.

Figure SI-6.4.1 shows RMSDs of the individual solute protein chains in relation to their contact with parent-SAGE 
over the course of the trajectory. 

SI-6.4.2 RMSDs of solute proteins in the context of their contact with K4-SAGE.
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Figure SI-6.4.2 shows RMSDs of the individual solute protein chains in relation to their contact with K4-SAGE over 
the course of the trajectory.

SI-6.4.3 RMSDs of solute proteins in the context of their contact with E4-SAGE.
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Figure SI-6.4.3 shows RMSDs of the individual solute protein chains in relation to their contact with E4-SAGE over 
the course of the trajectory.

Figure SI-6.4.4
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Figure SI-6.4.4 represents the correlation between SAGE contacts and RMSD for the SAGE simulations. In panel 
A) Parent-SAGE, panel B) K4-SAGE and panel C) E4-SAGE, shows the extent to which SAGE contact contributed 
to conformational changes in solute proteins. There were 10 copies of each solute protein in all three simulations, 
so correlations (per chain) were averaged and shown here with standard deviation.

SI-7 Experimental observations of “stickiness” of the parent-SAGE

SI-7.1 SAGE binding experimental Methods

Synthesis of SAGE peptides: The HubA molecule for SAGE formation was produced as 

described by Fletcher et al1. The HubB-K4 molecule for SAGE formation was produced as 

described by Ross et al2. The HubB-E4 was produced as described by Galloway et al.3 Amino 

acids were coupled using N,N’-diisopropylcarbodiimide and 6-chloro-1-hydroxybenzotriazole 

in DMF, under microwave at 80 °C for 5 min. Fmoc deprotection occurred using 20% v:v 

morpholine in DMF under microwave at 80°C for 5 min. After completion of automated 

synthesis, the peptide was manually N-terminally acetylated via acetic anhydride (0.2 mmol) 

and diisopropylethylamine (0.2 mmol) in DMF. Fmoc deprotection and resin cleavage 

occurred in 2.5% v:v triisopropylsilane and 2.5% v:v water in trifluoroacetic acid (TFA) at 20 

°C for 3 hours. The resin was removed by filtration and approximately half of the TFA was 

evaporated under nitrogen flow. Crude peptide was precipitated with cold diethyl ether and 

isolated by centrifugation. The pellet was dissolved in 50% v:v acetonitrile:water and 

lyophilized. Peptides were purified with a semi-prep C18 reverse-phase column (Phenomenex 

Kenetic, 5 µm, 100 Å, 10 mm x 150 mm) via HPLC (Jasco UK Ltd) under a linear acetonitrile 

gradient with 0.1% TFA. Fractions were inspected by MALDI-TOF mass spectrometry followed 

by analytical RP-HPLC (Phenomenex Kinetic, 5 µm, 100Å, 4.6 mm x 100 mm) and the desired 

fractions were pooled and lyophilized. 

SAGE formation and test for binding: 50 µM (one hub trimer peptide, covalently bound to one 

dimeric peptide) stock solutions were prepared in 25 mM HEPES, 150 mM NaCl at pH 7.4. 

SAGE particles were then assembled by mixing a 1:1 molar ratio of the two hubs and 

incubating at room temperature for 1 hour. Assembled SAGE particles were then mixed 1:1 in 

a volumetric ratio with a probe molecule and given a further 1 hour to bind to the SAGE 

particles. The final concentration of SAGE peptides (as defined above) was kept constant at 

25 µM and for an average sized, unilamellar SAGE there are approximately 1350 of these 

peptides. Samples were centrifuged for 6 min at 6000 x g, the supernatant was recovered and 
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the remaining concentration of the analyte was determined. Each of the experiments where 

absorbance at 260 nm or 280 nm was used to determine concentrations was blanked against 

a ‘SAGE only’ control set. Each of the experiments was also conducted in the absence of the 

SAGE hub molecules, in triplicate, to provide a ‘non-SAGE’ control for comparison. 

Measuring the sfGFP probe by fluorescence: sfGFP was prepared at 8 µM in 25 mM HEPES 

pH 7.4, 150 mM NaCl and used in a 50 µl, final volume, SAGE binding assays in triplicate (as 

described above). 30 µl of the supernatant was recovered and added to 70 µl of buffer A, 

before the fluorescence was measured using a Spectrofluorometer (Jasco, FP-6500). 

Concentrations were determined by comparison to a standard curve of sfGFP and adjusted to 

account for the dilution of the supernatant. 

SI-7.2 Experimental GFP binding to SAGE assemblies

Figure SI-7.2.1

Figure SI-7.1. Experiment to quantify the amount of sGFP adhering to the surface of the parent, E4 and K4 -SAGEs 

in vitro using spectrophotometric means. 
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