Ab initio calculations and QTAIM analyses of the structure and energetics of hydrated calcium fluoride and calcium carbonate

SUPPLEMENTARY MATERIAL

Isabel del Carmen Sáenz-Tavera¹, Victor M. Rosas-García^{1,2}

*Corresponding author. E-mail: <u>victor.rosasgr@uanl.edu.mx</u>

Telephone number 52-81-8329-4000 Ext. 6253

1 Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México. C.P. 66451

2 Corresponding author, e-mail: victor.rosasgr@uanl.edu.mx

Telephone number 52-81-8329-4000 Ext. 6253

Table of contents

Fig. S1. Optimum	n structures for $F(H_2O)_n$, n = 1–10, calculated using MP2/6-311++G**	4
Fig. S2. Optimur	n structures for CO_3^2 (H ₂ O) _n , n = 1–10, calculated using MP2/6-311++G**	5
Fig. S3. Optimur	n structures for CaF ₂ (H ₂ O) _n , n = 1–14, calculated using MP2/6-311++G**	6
Fig. S4. Optimur	n structures for CaCO ₃ (H ₂ O) _n , n = 1–14, calculated using MP2/6-311++G**	7
Fig. S5. F ⁻ (H ₂ O) ₂	minima at the HF/6-31G* level of theory	8
Fig. S6. F ⁻ (H ₂ O) ₃	minima at the HF/6-31G* level of theory	8
Fig. S7. F ⁻ (H ₂ O) ₄	minima at the HF/6-31G* level of theory	9
Fig. S8. F ⁻ (H ₂ O) ₅	minima at the HF/6-31G* level of theory	10
Fig. S9. F ⁻ (H ₂ O) ₆	minima at the HF/6-31G* level of theory	11
Fig. S10. F (H ₂ O)) $_7$ minima at the HF/6-31G* level of theory	12
Fig. S11. F ⁻ (H ₂ O)	$_{ m B}$ minima at the HF/6-31G* level of theory	.13
Fig. S12. F ⁻ (H ₂ O)) $_9$ minima at the HF/6-31G* level of theory	14
Fig. S13. F ⁻ (H ₂ O)	$_{10}$ minima at the HF/6-31G* level of theory	15
Fig. S14. $CO_3^{-2}(H)$	$ m H_2O)_2$ minima at the HF/6-31G* level of theory	.16
Fig. S15. CO_3^{-2} (H	$ m H_2O)_3$ minima at the HF/6-31G* level of theory	.16
Fig. S16. CO_3^{-2} (H	$I_2O)_4$ minima at the HF/6-31G* level of theory	17
Fig. S17. CO_3^{-2} (H	$I_2O)_5$ minima at the HF/6-31G* level of theory	.18
Fig. S18. CO_3^{-2} (H	$I_2O)_6$ minima at the HF/6-31G* level of theory	19
Fig. S19. $CO_{3^{-2}}(H)$	I_2O) ₇ minima at the HF/6-31G* level of theory	20
Fig. S20. $CO_3^{-2}(H)$	I_2O) ₈ minima at the HF/6-31G* level of theory	21
Fig. S21. CO_3^{-2} (H	$H_2O)_9$ minima at the HF/6-31G* level of theory	22
Fig. S22. $CO_3^{-2}(H)$	I_2O) ₁₀ minima at the HF/6-31G* level of theory	23
Fig. S23. $CaF_2(H$	₂ O) ₂ minima at the HF/6-31G* level of theory	24
Fig. S24. $CaF_2(H$	$_{2}O$) ₃ minima at the HF/6-31G* level of theory	25
Fig. S25. $CaF_2(H$	$_{2}O)_{4}$ minima at the HF/6-31G* level of theory	26
Fig. S26. $CaF_2(H$	$_{2}O)_{5}$ minima at the HF/6-31G* level of theory	27
Fig. S27. $CaF_2(H)$	$_{2}\text{O}$) ₆ minima at the HF/6-31G* level of theory	28
Fig. S28. $CaF_2(H)$	$_{2}O)_{7}$ minima at the HF/6-31G* level of theory	29
Fig. S29. $CaF_2(H$	$_{2}O$) ₈ minima at the HF/6-31G* level of theory	30
Fig. S30. $CaF_2(H)$	$_{2}O)_{9}$ minima at the HF/6-31G* level of theory	.31
Fig. S31. $CaF_2(H)$	$_{2}O)_{10}$ minima at the HF/6-31G* level of theory	32
Fig. 532. $CaF_2(H)$	$_{2}O$) ₁₁ minima at the HF/6-31G* level of theory	
Fig. 533. $CaF_2(H)$	$_{2}O$) ₁₂ minima at the HF/6-31G* level of theory	
Fig. 534. $CaF_2(H)$	$_{2}O$) ₁₃ minima at the HF/6-31G* level of theory	35
Fig. 535. $CaF_2(H)$	$_{2}O$) ₁₄ IIIIIIIIII at the HF/6-31G ⁺ level of theory.	30
Fig. 536. $CaCO_3$	$(H_2O)_2$ minima at the HE/6-21C* level of theory.	3/
Fig. 557. $CaCO_3$	$(\Pi_2 O)_3$ IIIIIIIIId dt the $\Pi F/O-51G^+$ level of theory.	יכיי סכ
Fig. 550. $CaCO_3$	$(\Pi_2 O)_4$ minima at the $\Pi F/O-51G^*$ level of theory.	00
Fig. 533 . CdCU ₃	(H_0) , minima at the HE/6 21C* level of theory.	
Fig. $S40$. CdCO ₃	$(H_0)_{-}$ minima at the HE/6 21C* level of theory	40 ⊿1
Fig. S41. CdCO $_3$	$(H_2O)_7$ minimize at the HE/6-21C* level of theory.	4⊥ ∕\7
Fig. S_{42} . CaCO ₃	$(H_2O)_8$ minima at the HE/6-21C* level of theory	4 ∠ ∕\?
Fig. S_{43} . Ca CO_3	$(H_2O)_{12}$ minima at the HE/6-31C* level of theory	4 .) ΛΛ
Fig. S44. $CaCO_3$	(H_0) , minima at the HE/6 21C* level of theory	44 15
1^{1} Ig. 345. CaCO ₃		45

Fig. S46. CaCO ₃ (H ₂ O) ₁₂ minima at the HF/6-31G* level of theory	46
Fig. S47. CaCO ₃ (H ₂ O) ₁₃ minima at the HF/6-31G* level of theory	47
Fig. S48. $CaCO_3(H_2O)_{14}$ minima at the HF/6-31G* level of theory	
Table S1. Values of g bind parameters for hydrated clusters	49

10 Fig. S1. Optimum structures for $F^{-}(H_2O)_n$, n = 1–10, calculated using MP2/6-311++G**. Structures in XYZ format available at DOI: 10.6084/m9.figshare.2072941 https://figshare.com/s/3d7672d2ef327d528418

Fig. S2. Optimum structures for $CO_3^{2-}(H_2O)_n$, n = 1–10, calculated using MP2/6-311++G**. Structures in XYZ format available at DOI: 10.6084/m9.figshare.5348155 https://figshare.com/s/2dcbe8df0addfd9c0d95

Fig. S3. Optimum structures for $CaF_2(H_2O)_n$, n = 1–14, calculated using MP2/6-311++G**. Structures in XYZ format available at DOI: 10.6084/m9.figshare.2072944 https://figshare.com/s/4dc74edc689712dab6c0

Fig. S4. Optimum structures for $CaCO_3(H_2O)_n$, n = 1–14, calculated using MP2/6-311++G**. Structures in XYZ format available at DOI: 10.6084/m9.figshare.5341261 https://figshare.com/s/9ed7e0464d68660e90da

Fig. S5. F⁻(H₂O)₂ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081043 https://figshare.com/s/f12cddf94b0bbf6edad1

Fig. S6. $F^{-}(H_2O)_3$ minima at the HF/6-31G* level of theory.

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081046 https://figshare.com/s/f24ca6e7e965099d36e4

Fig. S7. $F^{-}(H_2O)_4$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081049 https://figshare.com/s/f1ae964b3c712af0af55

Fig. S8. $F^{-}(H_2O)_5$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081058 https://figshare.com/s/aa3f7a2fc4be3fccdd7a

Fig. S9. $F^{-}(H_2O)_6$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081061 https://figshare.com/s/c8d6bffc4a21cb3b422a

Fig. S10. F⁻(H₂O)₇ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081064 https://figshare.com/s/e140f1990efb2afb4dc4

Fig. S11. F⁻(H₂O)₈ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081067 https://figshare.com/s/d7f43aad960e99d4a6d5

Fig. S12. $F^{-}(H_2O)_9$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081070 https://figshare.com/s/5398ed975077cf63707b

Fig. S13. F⁻(H₂O)₁₀ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7081076 https://figshare.com/s/39097333e72ce9858d8f

Fig. S14. CO₃⁻²(H₂O)₂ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078343 https://figshare.com/s/bc142fc32338ebf4f044

Fig. S15. $CO_3^{-2}(H_2O)_3$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078346 https://figshare.com/s/156407feea781c583119

Fig. S16. CO₃-²(H₂O)₄ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078352 https://figshare.com/s/797a0dcbb38cd02c4649

Fig. S18. CO₃⁻²(H₂O)₆ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078358 https://figshare.com/s/b9495969bb263ccfcc64

Fig. S19. $CO_3^{-2}(H_2O)_7$ minima at the HF/6-31G* level of theory.

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078364 https://figshare.com/s/956a7b49908fe00b4a6c

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078367 https://figshare.com/s/febed014efc7688b2f20

Fig. S21. CO₃⁻²(H₂O)₉ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078370 https://figshare.com/s/9fa6b156bfeac1872b97

Fig. S22. CO₃⁻²(H₂O)₁₀ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7078376 https://figshare.com/s/0aef51c4ee4d869560a2

Fig. S23. CaF₂(H₂O)₂ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073183 https://figshare.com/s/77dd570b7ffe6eb2d5b4

Fig. S24. $CaF_2(H_2O)_3$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073198 https://figshare.com/s/c346612e74d76217d3d1

Fig. S25. CaF₂(H₂O)₄ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073201 https://figshare.com/s/11e1ab3b8e8b61113f7b

Fig. S26. $CaF_2(H_2O)_5$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073219 https://figshare.com/s/e77b9251faddf76d8a27

Fig. S27. CaF₂(H₂O)₆ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073225 https://figshare.com/s/c429576501396188b8c0

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073234 https://figshare.com/s/438367ab01cd6bcef828

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073252 https://figshare.com/s/aa9ba006766af08ff77c

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073258 https://figshare.com/s/244b0aeafdee8005e6de

Fig. S32. CaF₂(H₂O)₁₁ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073270 https://figshare.com/s/8b6e708d958fd4db6976

Fig. S33. CaF₂(H₂O)₁₂ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073273 https://figshare.com/s/109ca9615a3478043f01

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073276 https://figshare.com/s/15fded5338de76f0cd39

Fig. S35. CaF₂(H₂O)₁₄ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7073282 https://figshare.com/s/e96e1c690238e9d97d7d

Fig. S36. CaCO₃(H₂O)₂ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077200 https://figshare.com/s/cc4c6f112892302b0115

Fig. S37. CaCO₃(H₂O)₃ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077206 https://figshare.com/s/07fb7c60eee574fd902a

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077212 https://figshare.com/s/7f519a8900b288531d6e

Fig. S39. $CaCO_3(H_2O)_5$ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077218 https://figshare.com/s/8eb7651e46fd21f3de7e

Fig. S40. CaCO₃(H₂O)₆ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077227 https://figshare.com/s/f123c22bbf1af8128c98

Fig. S41. CaCO₃(H₂O)₇ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077242 https://figshare.com/s/9dd37767e9d27eaba559

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077251 https://figshare.com/s/938a7dfa08a481c70656

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077257 https://figshare.com/s/675a16bad0bcf0004d50

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077260 https://figshare.com/s/4cfd14f54ed44a27363d

https://figshare.com/s/56a19e43a1c4aca63bfb

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077266 https://figshare.com/s/ed928e35da4f1be809f2

Fig. S47. CaCO₃(H₂O)₁₃ minima at the HF/6-31G* level of theory. Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077269 https://figshare.com/s/cf1c747f6a91139f84d4

Structures in XYZ format available at DOI: 10.6084/m9.figshare.7077281 https://figshare.com/s/f82d1f9c3c2b08b56762

Compound	ΔΕ/	q_bind		
	(kcal mol ⁻¹)	global minimum	high-energy	∆qbind
$F^{-}(H_2O)_6$	1.53	5.32E-04	1.88E-04	-3.44E-04
$F^{-}(H_2O)_7$	1.63	4.67E-04	2.57E-04	-2.10E-04
$F^{-}(H_2O)_8$	2.95	5.32E-05	-1.71E-05	-7.03E-05
$F^{-}(H_2O)_9$	1.81	5.06E-04	8.45E-04	3.39E-04
$F^{-}(H_2O)_{10}$	1.49	4.50E-04	2.24E-04	-2.26E-04
$CO_3^{2-}(H_2O)_5$	0.88	1.36E-03	2.85E-04	-1.07E-03
$CO_3^{2-}(H_2O)_6$	0.41	3.59E-05	2.02E-05	-1.58E-05
$CO_3^{2-}(H_2O)_7$	1.34	8.15E-04	-1.06E-03	-1.87E-03
$CO_3^{2-}(H_2O)_8$	1.24	5.02E-04	-4.73E-04	-9.75E-04
$CO_3^{2-}(H_2O)_9$	1.33	2.67E-04	-2.19E-04	-4.86E-04
$CO_3^{2-}(H_2O)_{10}$	1.00	2.69E-04	-4.27E-04	-6.96E-04
$CaF_2(H_2O)_5$	1.00	2.98E-04	2.07E-04	-9.10E-05
$CaF_2(H_2O)_6$	0.54	5.70E-04	9.52E-04	3.82E-04
$CaF_2(H_2O)_7$	2.78	1.21E-03	-1.73E-03	-2.94E-03
$CaF_2(H_2O)_8$	1.57	1.36E-03	4.89E-04	-8.69E-04
$CaF_2(H_2O)_9$	0.88	1.09E-03	1.16E-03	7.30E-05
$CaF_2(H_2O)_{10}$	0.91	1.17E-03	1.32E-03	1.48E-04
$CaF_2(H_2O)_{11}$	1.99	-1.24E-03	1.06E-03	2.30E-03
$CaF_2(H_2O)_{12}$	1.73	1.12E-03	6.14E-05	-1.06E-03
$CaF_2(H_2O)_{13}$	0.71	4.57E-04	-2.31E-04	-6.88E-04
$CaF_2(H_2O)_{14}$	2.69	1.14E-03	-1.89E-04	-1.32E-03
$CaCO_3(H_2O)_5$	1.43	4.02E-04	-5.48E-04	-9.50E-04
$CaCO_3(H_2O)_6$	1.05	1.60E-03	8.31E-04	-7.72E-04
$CaCO_3(H_2O)_7$	0.78	2.03E-03	2.14E-03	1.10E-04
$CaCO_3(H_2O)_8$	1.24	1.70E-03	1.41E-03	-2.89E-04
$CaCO_3(H_2O)_9$	1.48	6.11E-04	6.29E-04	1.84E-05
$CaCO_3(H_2O)_{10}$	2.68	1.55E-03	1.47E-03	-8.10E-05
$CaCO_3(H_2O)_{11}$	1.73	-1.44E-03	1.81E-03	3.24E-03
$CaCO_3(H_2O)_{12}$	2.61	-5.56E-04	-1.73E-02	-1.67E-02
$CaCO_3(H_2O)_{13}$	1.69	-1.89E-04	1.99E-03	2.17E-03
$CaCO_3(H_2O)_{14}$	1.51	6.19E-05	-9.93E-04	-1.05E-03

Table S1. Values of q_bind parameters for hydrated clusters.