
Supplementary Information

S.1 AIMC Working Equations

A brief overview and explanation of the working equations of the AIMC method is presented below;

the derivation of these presented elsewhere.1,2 The wavefunction ansatz for AIMC is the same as that

for MCE,3,4 where the wavefunction |Ψ〉 is composed of a trajectory guided basis |ϕk〉 coupled to time-

dependent amplitudes Dk and summed over K configurations

|Ψ〉 =
K∑

k=1

Dk(t) |ϕk〉 . (S.1)

The trajectory guided basis |ϕk〉 is comprised of a product of nuclear and electronic parts

|ϕk〉 =

[
J∑

i=1

aik(t) |φi〉

]
|zk(t)〉 , (S.2)

where |φi〉 represents the ith electronic state of a total of J electronic states with corresponding time-

dependent amplitude aik(t), and |zk(t)〉 is the trajectory guided Gaussian basis vector centred at coordi-

nates and momenta (qk,pk):

zk =
(γ

2

)1/2
qk +

i

h̄

(
1

2γ

)1/2

pk (S.3)

〈q|zk〉 =
(γ
π

)M/4
exp

(
−γ

2
(q− qk)2 +

i

h̄
pk(q− qk) +

ipkqk

2h̄

)
. (S.4)

The Gaussian basis vector is multidimensional, and is the product of M Gaussian basis functions for M

atoms, |zk〉 =
M∏

m=1
|z(m)

k 〉, whilst γ is a width parameter that takes a different value for different atoms.

The phase space centres (qk,pk) of the Gaussians are guided by Ehrenfest trajectories that resemble

Newton’s equations of motion, but include quantum and nonadiabatic effects from electronic structure

information

q̇k = pkm−1 (S.5a)

ṗk = Fk (S.5b)

Fk =
J∑

i=1

a∗ikaik∇qVi(qk)

+
∑
j 6=i

a∗ikajkdij(qk) [Vi(qk)− Vj(qk)] .
(S.5c)

In the above, m are the atomic masses, Fk is the Ehrenfest force, ∇q is the gradient, Vi(qk) is the adiabatic

electronic energy, and dij(qk) is the nonadiabatic coupling vector that couples the ith and jth electronic
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states in the adiabatic representation via

dij(qk) = 〈φi|∇q|φj〉 . (S.6)

The time-dependence of the electronic state amplitudes aik is given by

ȧik = − i
h̄

J∑
j=1

Hel
ij(zk)ajk (S.7)

where the elements of the electronic Hamiltonian Hel
ij(zk), evaluated at the phase space centres of zk, are

Hel
ij(zk) =

Vi(qk) i = j

−ih̄pkdij(qk)m−1 i 6= j
. (S.8)

The time-dependence of the multiconfigurational amplitudes Dk is given by

K∑
l=1

〈ϕk|ϕl〉 Ḋl = − i
h̄

K∑
l=1

[
〈ϕk|Ĥ|ϕl〉 − ih̄ 〈ϕk|ϕ̇l〉

]
Dl. (S.9)

The entire Hamiltonian matrix elements 〈ϕk|Ĥ|ϕl〉 are the sum of kinetic energy and potential energy

components as well as a nonadiabatic coupling term

〈ϕk|Ĥ|ϕl〉 =
J∑

i,j=1

a∗ikajl 〈zkφi|Ĥ|φjzl〉

=
J∑

i,j=1

a∗ikajl

[
δij 〈zk|T̂ |zl〉+ δij 〈zk|Vi(q)|zl〉 − h̄2 〈zk|dij(q)q̇|zl〉

]
.

(S.10)

While the kinetic energy component may be calculated analytically, the potential energy and matrix

elements of nonadiabatic coupling must be calculated approximately. A bra-ket averaged Taylor (BAT)

expansion is utilised that takes the average of two Taylor expansions centred around the maximum of one

of the basis functions involved in the matrix element.1 For the potential energy term, expansion to first

order gives

〈zk|Vi(q)|zl〉 ≈ 〈zk|zl〉
(
Vi(qk) + Vi(ql)

2

)
+
(
〈zk|(q− qk)|zl〉∇qVi(qk) + 〈zk|(q− ql)|zl〉∇qVi(ql)

2

)
.

(S.11)

The potential energy and its derivative has already been evaluated at coordinates qk and ql for the

trajectories in Eq. (S.5), therefore no additional electronic structure calculations are required to evaluate

the potential energy matrix element.

The matrix elements of nonadiabatic coupling are approximated by a zeroth order BAT expansion to
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give

〈zk|dij(q)q̇|zl〉 ≈
i

2h̄
〈zk|zl〉 (q̇kdij(qk) + q̇ldij(ql)) (S.12)

As with the potential energy matrix element, the matrix elements of nonadiabatic coupling require no extra

electronic structure calculations to evaluate the BAT expansion. Each trajectory may also be propagated

individually and then combined via the time-dependence of the multiconfigurational D amplitudes after

the calculations have taken place, provided that the electronic structure information is saved at each time

step.

S.1.1 Cloning Procedure

The previous section presented the working equations and matrix element evaluation for the AIMC

method, and this present section describes the cloning procedure that expands the basis by wavepacket

splitting. The cloning procedure is applied when a trajectory |ϕk〉 has significant population, or equiva-

lently significant amplitude, on multiple electronic states with differing forces. In this circumstance, the

Ehrenfest force guiding the trajectory would be an unphysical average of the different forces and will lead

to a poor reproduction of the dynamics occurring. The difference between the force on the ith state and

the Ehrenfest average force is given by

∆Fik = ∇qVi(q)−
J∑

j=1

a∗jkajk∇qVj(q). (S.13)

The “breaking force” which triggers cloning is then defined as

Fbr
ik = a∗ikaik∆Fik. (S.14)

When |Fbr
ikm

−1| > ξclon and the nonadiabatic coupling vector is small |dij(qk)| < ξnac cloning occurs.

The thresholds ξclon and ξnac are determined empirically. For the former, ξclon needs to be large enough

to limit the rate of basis set expansion so that it does not rise exponentially and cause the calculation to

become intractable, but small enough to allow cloning to take place at all. The latter threshold, ξnac is

utilised to ensure that cloning does not take place in regions of large population transfer, again to limit

the size of the basis expansion.

When the cloning procedure is applied, one trajectory |ϕk〉 becomes two: |ϕ′k〉 and |ϕ′′k〉. The ampli-

tudes of the electronic states are adjusted to ensure that |ϕ′k〉 has population on the ith electronic state

with zero on the rest, whilst |ϕ′′k〉 is the opposite - zero population on the ith electronic state, and nonzero

on the rest

|ϕ′k〉 =

 aik

|aik|
|φi〉+

∑
j 6=i

0× |φj〉

 |zk〉 (S.15)

|ϕ′′k〉 =

0× |φi〉+
1√

1− |aik|2
∑
j 6=i

ajk |φj〉

 |zk〉 . (S.16)
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The multiconfigurational amplitudes are then adjusted to ensure that the wavefunction remains unchanged

as a result of the cloning procedure

D′k = Dk|aik| (S.17)

D′′k = Dk

√
1− |aik|2. (S.18)

S.2 Supporting Figures for Dissociation Kinetics

S.2.1 Initial N-H Stretch Energy vs Dissociation Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  50  100  150  200  250  300  350

In
iti

al
 E

ne
rg

y 
in

 N
-H

 S
tr

et
ch

 / 
a.

u.

Dissociation Time / fs

Figure S.1: Initial vibrational energy in the N-H stretch coordinate for each trajectory (calculated using
the harmonic approximation, and as sampled by the Wigner distribution in the harmonic approximation)
versus the trajectories dissociation time.
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S.2.2 Example Dynamic Trajectory Potential Energies
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Figure S.2: Dynamic potential energy of a trajectory that (a) has sufficient energy to dissociate quickly
over the barrier, and (b) samples more of the potential energy surface in the quasi-bound region before
finding a way around the barrier, as a function of N-H distance (note that the trajectory is dynamic,
so all other atoms are also moving). Static potential energy curves of the S0, S1, and S2 states at the
trajectories initial geometries are shown as a reference, generated by holding all atoms fixed except the
hydrogen attached to the nitrogen, which is extended. All electronic structure is at the SA3-CAS(8,7)-SCF
level with aug-cc-PVDZ basis set, as with the dynamics calculations.
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