Supporting Information for:

White-Light Generation on All-solution-processed OLEDs using a Benzothiazole-salophen derivative reactive to the ESIPT process

Luís Gustavo Teixeira Alves Duarte,^{a,b} José Carlos Germino,^a Jônatas Faleiro Berbigier,^b Cristina Aparecida Barboza,^c Marcelo Meira Faleiros,^a Deborah de Alencar Simoni,^a Miguel Tayar Galante, ^a Matheus Serra de Holanda,^a Fabiano Severo Rodembusch^b and Teresa Dib Zambon Atvara^{1*}

^aChemistry Institute, University of Campinas, Campinas, Brazil

^bGrupo de Pesquisa em Fotoquímica Orgânica Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

^cInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland

*Corresponding Author: tatvars@iqm.unicamp.br

Fig. S1 ¹H NMR spectrum.

Fig. S2 ¹³C NMR spectrum.

Fig. S3 BTS FTIR spectrum.

Fig. S4 BTS mass spectrum.

Fig. S5 (a) Molecular structure of BTS with 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines. (b) Parallel alignment of BTS molecules, with plane centroid to plane centroid distances shown as black lines.

Table S1 Crystal data and structure refinement for BTS.

BTS
$C_{27}H_{19}N_3O_2S$
449.51
150(2)
monoclinic
$P2_1/c$
12.7652(5)
6.1962(2)
26.7849(9)
90
91.423(2)
90
2117.92(13)
4
1.410
1.612
936.0
$0.210\times0.095\times0.034$
CuKa ($\lambda = 1.54178$)
9.454 to 132.824
$\begin{array}{l} \textbf{-12} \leq h \leq 14, \textbf{-7} \leq k \leq 7, \textbf{-21} \leq l \\ \leq 31 \end{array}$
16160
$3582 [R_{int} = 0.0550, R_{sigma} = 0.0536]$
3582/0/304
1.024
$R_1 = 0.0425, wR_2 = 0.1083$

Final R indexes [all data]	$R_1 = 0.0548, wR_2 = 0.1154$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.37

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for BTS. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	z	U(eq)
S 1	1398.2(4)	-231.6(8)	5256.5(2)	29.50(18)
O1	2112.6(12)	11934(3)	3292.3(5)	33.9(4)
O2	4620.9(13)	10419(3)	3768.8(6)	39.8(4)
N1	1383.1(13)	8690(3)	3796.4(5)	23.1(4)
N2	3368.5(12)	7083(3)	3816.2(6)	24.0(4)
N3	3283.7(14)	196(3)	4901.2(6)	27.4(4)
C1	1107.3(17)	12567(3)	3231.0(7)	28.2(5)
C2	895(2)	14506(4)	2987.3(7)	36.1(6)
C3	-117(2)	15180(4)	2907.1(8)	42.5(6)
C4	-957(2)	13928(4)	3063.6(8)	45.2(7)
C5	-759.0(18)	12014(4)	3307.7(8)	35.9(5)
C6	272.4(16)	11303(3)	3401.8(7)	25.6(5)
C7	452.3(16)	9318(3)	3672.0(7)	24.0(4)
C8	1561.4(15)	6786(3)	4071.6(7)	22.0(4)
C9	804.8(16)	5709(3)	4340.5(7)	24.8(5)
C10	1040.8(15)	3858(3)	4602.3(7)	24.2(4)
C11	2059.0(15)	3011(3)	4605.8(7)	22.1(4)
C12	2823.4(15)	4067(3)	4335.8(7)	22.8(4)
C13	2586.0(15)	5940(3)	4068.7(7)	21.4(4)
C14	3959.4(15)	6093(3)	3510.3(7)	23.8(5)
C15	4847.7(15)	7158(3)	3290.2(7)	24.9(5)
C16	5444.4(16)	6061(4)	2938.8(8)	32.3(5)
C17	6327.9(17)	6987(4)	2742.4(8)	40.4(6)
C18	6636.3(18)	9014(4)	2906.6(9)	44.3(7)
C19	6073.7(18)	10146(4)	3251.8(9)	39.7(6)
C20	5163.5(16)	9250(4)	3439.8(8)	30.1(5)
C21	2334.4(15)	1078(3)	4892.6(7)	22.2(4)
C22	2333.4(16)	-2129(3)	5426.3(7)	25.0(5)
C23	2232.9(18)	-3960(4)	5726.3(7)	32.6(5)
C24	3119.2(18)	-5252(3)	5801.9(8)	32.4(5)
C25	4054.8(18)	-4713(4)	5583.2(8)	35.4(5)
C26	4159.6(17)	-2929(4)	5290.7(8)	33.2(5)
C27	3284.5(16)	-1630(3)	5206.6(7)	26.1(5)

Table S3 Anisotropic Displacement Parameters (Å ² ×10 ³) for BTS. The Anisotropic displacement
factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
------	-----------------	----------	-----------------	-----------------	-----------------	-----------------

S1	26.6(3)	27.8(3)	34.3(3)	4.4(2)	4.0(2) 1.0(2)
01	32.1(9)	36.3(9)	33.4(8)	5.8(7)	-1.2(7) -7.8(7)
02	33.6(9)	28.7(9)	57.6(10)	-3.9(8)	9.3(8) -9.4(7)
N1	24.1(9)	22.0(9)	23.1(8)	-1.1(7)	-1.7(7) 0.2(7)
N2	20.1(9)	24.4(9)	27.4(8)	2.9(7)	-0.4(7) -2.5(7)
N3	40.6(11)	20.1(9)	21.3(8)	0.5(7)	-1.0(8) -6.5(8)
C1	39.1(13)	25.3(11)	20.0(9)	-4.8(8)	-2.5(9) -2.2(10)
C2	59.9(16)	27.2(12)	21.1(10)	-0.2(9)	-2.3(10) -3.9(11)
C3	73.8(19)	30.4(13)	23(1)	0.1(9)	-4.6(11) 11.2(13)
C4	51.8(16)	49.5(16)	33.9(12)	-1.2(11)	-7.0(11) 24.7(13)
C5	35.8(13)	41.3(14)	30.3(11)	1.4(10)	-1.7(9) 10.7(11)
C6	30.1(12)	25.1(11)	21.5(9)	-3.1(8)	-1.3(8) 3.3(9)
C7	23.7(11)	24.7(11)	23.6(9)	-2.2(8)	1.6(8) -1.8(9)
C8	24.1(11)	21.1(10)	20.7(9)	-3.6(8)	-1.5(8) -1.2(8)
C9	20.2(11)	27.5(11)	26.7(10)	-0.1(9)	-0.1(8) 1.6(9)
C10	21.9(11)	26.5(11)	24.5(9)	0.9(8)	2.9(8) -4.0(9)
C11	23.5(11)	21.1(10)	21.6(9)	-2.9(8)	0.2(8) -2.4(8)
C12	17.9(10)	25.1(11)	25.3(10)	-1.7(8)	-0.8(8) -1.2(8)
C13	20.4(10)	22.1(10)	21.5(9)	-2.2(8)	0.0(8) -4.1(8)
C14	21.1(10)	24.7(11)	25.6(10)	2.1(8)	-2.8(8) 0.0(9)
C15	17.9(10)	29.0(11)	27.6(10)	6.2(9)	-2.4(8) 0.6(8)
C16	25.9(12)	38.9(13)	32.0(11)	6.1(10)	0.6(9) 4.2(10)
C17	23.7(12)	60.1(17)	37.9(12)	11.0(12)	6(1) 5.9(11)
C18	21.6(12)	61.1(17)	50.3(14)	22.2(13)	2.1(11) -8.0(12)
C19	26.4(13)	39.8(14)	52.7(14)	13.6(11)	-2.8(11) -8.4(10)
C20	22.3(11)	32.4(12)	35.4(11)	7.8(9)	-2.6(9) -0.6(9)
C21	19.5(10)	22.7(11)	24.2(9)	-3.6(8)	0.0(8) -0.5(8)
C22	26.0(11)	25.1(11)	23.9(9)	-2.2(8)	-0.7(8) -0.7(9)
C23	35.9(13)	33.4(13)	28.7(10)	-1.0(9)	3.8(9) -8.3(10)
C24	43.8(14)	25.0(11)	27.8(10)	4.4(9)	-9.7(10) 0.4(10)
C25	32.5(13)	39.1(14)	34.3(11)	0.2(10)	-7.3(10) 3.9(10)
C26	26.6(12)	37.9(13)	34.7(11)	0.5(10)	-4.8(9) 2(1)
C27	25.7(11)	26.3(11)	26.2(10)	-3.6(9)	-2.0(8) -2.2(9)

Table S4 Bond Lengths for BTS.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	C22	1.728(2)	C9	C10	1.374(3)
S 1	C21	1.759(2)	C10	C11	1.401(3)
O1	C1	1.348(3)	C11	C12	1.392(3)
O2	C20	1.346(3)	C11	C21	1.461(3)
N1	C7	1.286(3)	C12	C13	1.393(3)
N1	C8	1.407(3)	C14	C15	1.450(3)
N2	C14	1.283(3)	C15	C16	1.401(3)
N2	C13	1.411(2)	C15	C20	1.412(3)

N3	C21	1.329(3)	C16	C17	1.381(3)
N3	C27	1.397(3)	C17	C18	1.385(4)
C1	C2	1.391(3)	C18	C19	1.377(4)
C1	C6	1.408(3)	C19	C20	1.393(3)
C2	C3	1.369(4)	C22	C27	1.397(3)
C3	C4	1.396(4)	C22	C23	1.398(3)
C4	C5	1.375(3)	C23	C24	1.397(3)
C5	C6	1.405(3)	C24	C25	1.384(3)
C6	C7	1.442(3)	C25	C26	1.363(3)
C8	C9	1.389(3)	C26	C27	1.391(3)
C8	C13	1.409(3)			

Table S5 Bond Angles for BTS.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C22	S 1	C21	89.15(10)	C8	C13	N2	118.97(17)
C7	N1	C8	121.73(17)	N2	C14	C15	121.33(19)
C14	N2	C13	120.03(17)	C16	C15	C20	118.7(2)
C21	N3	C27	109.30(17)	C16	C15	C14	119.73(19)
01	C1	C2	118.8(2)	C20	C15	C14	121.53(19)
01	C1	C6	121.64(18)	C17	C16	C15	121.1(2)
C2	C1	C6	119.5(2)	C16	C17	C18	119.0(2)
C3	C2	C1	120.6(2)	C19	C18	C17	121.8(2)
C2	C3	C4	120.8(2)	C18	C19	C20	119.6(2)
C5	C4	C3	119.3(2)	02	C20	C19	118.0(2)
C4	C5	C6	121.1(2)	02	C20	C15	122.13(19)
C5	C6	C1	118.7(2)	C19	C20	C15	119.8(2)
C5	C6	C7	119.6(2)	N3	C21	C11	123.59(18)
C1	C6	C7	121.66(18)	N3	C21	S 1	115.64(14)
N1	C7	C6	121.50(19)	C11	C21	S 1	120.76(15)
C9	C8	N1	124.66(18)	C27	C22	C23	120.98(19)
C9	C8	C13	118.79(18)	C27	C22	S 1	109.92(15)
N1	C8	C13	116.55(17)	C23	C22	S 1	129.09(17)
C10	C9	C8	121.25(19)	C24	C23	C22	117.6(2)
C9	C10	C11	120.49(19)	C25	C24	C23	120.3(2)
C12	C11	C10	118.85(18)	C26	C25	C24	122.5(2)
C12	C11	C21	119.72(18)	C25	C26	C27	118.2(2)
C10	C11	C21	121.42(18)	C26	C27	N3	123.6(2)
C11	C12	C13	120.80(18)	C26	C27	C22	120.5(2)
C12	C13	C8	119.81(18)	N3	C27	C22	115.98(18)
C12	C13	N2	121.13(17)				

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
01	H1A	N1	0.85(3)	1.82(3)	2.606(2)	152(2)
02	H2A	N2	0.85(3)	1.84(3)	2.618(2)	151(2)

 Table S7 Torsion Angles for BTS.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	C1	C2	C3	178.44(18)	C20	C15	C16	C17	0.3(3)
C6	C1	C2	C3	-0.8(3)	C14	C15	C16	C17	-176.49(17)
C1	C2	C3	C4	-0.6(3)	C15	C16	C17	C18	1.5(3)
C2	C3	C4	C5	1.0(3)	C16	C17	C18	C19	-1.4(3)
C3	C4	C5	C6	0.0(3)	C17	C18	C19	C20	-0.6(3)
C4	C5	C6	C1	-1.4(3)	C18	C19	C20	O2	-178.63(19)
C4	C5	C6	C7	178.15(19)	C18	C19	C20	C15	2.5(3)
01	C1	C6	C5	-177.42(18)	C16	C15	C20	O2	178.82(18)
C2	C1	C6	C5	1.8(3)	C14	C15	C20	02	-4.4(3)
01	C1	C6	C7	3.0(3)	C16	C15	C20	C19	-2.3(3)
C2	C1	C6	C7	-177.77(17)	C14	C15	C20	C19	174.43(18)
C8	N1	C7	C6	178.26(16)	C27	N3	C21	C11	-179.64(16)
C5	C6	C7	N1	-175.01(18)	C27	N3	C21	S 1	0.61(19)
C1	C6	C7	N1	4.6(3)	C12	C11	C21	N3	-2.2(3)
C7	N1	C8	C9	-17.0(3)	C10	C11	C21	N3	178.90(17)
C7	N1	C8	C13	162.97(17)	C12	C11	C21	S 1	177.55(14)
N1	C8	C9	C10	-179.73(17)	C10	C11	C21	S 1	-1.4(2)
C13	C8	C9	C10	0.3(3)	C22	S 1	C21	N3	-1.00(15)
C8	C9	C10	C11	0.3(3)	C22	S 1	C21	C11	179.24(15)
C9	C10	C11	C12	-0.6(3)	C21	S 1	C22	C27	1.05(14)
C9	C10	C11	C21	178.32(17)	C21	S 1	C22	C23	-177.74(19)
C10	C11	C12	C13	0.4(3)	C27	C22	C23	C24	0.7(3)
C21	C11	C12	C13	-178.54(16)	S 1	C22	C23	C24	179.37(15)
C11	C12	C13	C8	0.1(3)	C22	C23	C24	C25	-0.2(3)
C11	C12	C13	N2	176.57(16)	C23	C24	C25	C26	0.2(3)
C9	C8	C13	C12	-0.5(3)	C24	C25	C26	C27	-0.8(3)
N1	C8	C13	C12	179.53(16)	C25	C26	C27	N3	-177.83(18)
C9	C8	C13	N2	-176.98(16)	C25	C26	C27	C22	1.3(3)
N1	C8	C13	N2	3.0(2)	C21	N3	C27	C26	179.46(18)
C14	N2	C13	C12	52.3(2)	C21	N3	C27	C22	0.3(2)
C14	N2	C13	C8	-131.22(18)	C23	C22	C27	C26	-1.3(3)
C13	N2	C14	C15	-172.63(15)	S 1	C22	C27	C26	179.79(15)
N2	C14	C15	C16	-176.84(17)	C23	C22	C27	N3	177.92(17)
N2	C14	C15	C20	6.4(3)	S 1	C22	C27	N3	-1.0(2)

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BTS.

Atom	x	У	z	U(eq)
H2	1457	15371	2875	43
H3	-249	16515	2743	51

H4	-1657	14394	3002	54
Н5	-1329	11158	3414	43
H7	-130	8455	3760	29
H9	111	6264	4343	30
H10	510	3146	4782	29
H12	3515	3503	4334	27
H14	3812	4633	3426	29
H16	5238	4656	2834	39
H17	6718	6244	2498	49
H18	7253	9641	2778	53
H19	6305	11528	3361	48
H23	1585	-4313	5873	39
H24	3080	-6507	6004	39
H25	4646	-5620	5639	43
H26	4813	-2583	5148	40
H1A	2091(19)	10780(50)	3466(9)	39
H2A	4120(20)	9620(40)	3857(9)	39

Fig. S6 Cyclic voltammogram of $1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}$ tetrabutylammonium hexafluorophosphate solution in acetonitrile (scan rate 20 mV s-1) in the presence and absence of BTS. For clarity, only anodic sweep is shown.

Fig. S7 Solid-state electronic absorption spectrum of BTS on diffuse reflectance mode.

Fig. S8 Normalized steady-state electronic absorption, PLE and PL spectra of BTS in (a) DCM.
(b) BTS PL in the solid-state. Steady-state electronic absorption, PLE and PL spectra of BTS in
(c) pyridine and (c) DCM with trace amounts of TFA. Concentration: 8.5 μmol L⁻¹.

Fig. S9 Optimized geometries for (a) neutral, (b) tautomeric and (d) deprotonated forms of BTS at the CAM-B3LYP/6-311++G(d,p) level.

Fig. S10 Fluorescence decays of BTS in (a) DCM, (b) DCM with trace amounts of TFA and in pyridine (λ_{exc} = 335.2 nm). Concentration: 8.5 µmol L⁻¹. Emission wavelengths used to record the decays along to IRF profiles are related in the figure.

Fig. S11 Current density *vs.* voltage, Luminance *vs.* voltage and Current efficiency *vs.* voltage curves for the diodes composed of PVK:BTS in the molar fractions of (a) 0.5%, (b) 1.0% and (c) 2.5% as active layers.

Fig. S12 EL dependency with the applied field to the device with 0.5% mol/mol of BTS in PVK. The orange arrow indicates the increase of voltage.