Supporting Information

Probing the cooperative mechanism of the μ - δ opioid receptor

heterodimer by multiscale simulation

Longrong Wang,^a Yuan Yuan,^b Xin Chen,^a Jianfang Chen,^a Yanzhi Guo,^a Menglong Li,^a Chuan Li^c and Xuemei Pu*^a

- ^{a.} Faculty of Chemistry, Sichuan University, Chengdu, Sichuan 610064; People's Republic of China.
- ^{b.} College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
- ^{c.} College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- * E-mail address: <u>xmpuscu@scu.edu.cn</u>

Fig S1. The sequence similarity and secondary structure information from aligned sequences between μ -OR and δ -OR. Sequences with similar scores greater than 0.7 are rendered as white characters on the red background. Strictly conserved residues are in the column with blue frames.

A-I dimer

Fig. S2 Interface hot spots in the μ - δ heterodimers. The interface of TM1-TM2-H8 between the two protomers is shown, in which the μ -OR and δ -OR are represented by purple and salmon pink, respectively. Light purple and light pink denote TM7s of the two subunits, respectively. Hot spots are displayed in sticks and shown in bold font, in which ones on TM7 are highlighted in red (e.g., H7.36 and L7.48 for the I-I dimer. L7.48 for the A-I dimer).

Fig S3. The projection of the first five eigenvectors for the other two parallel simulations (e.g., simulation 2 and simulation 3) with the exception of simulation 1 in the text for the monomers. The colours from red to blue correspond to the mobility from large to small.

Fig S4. The projection of the first five eigenvectors for the other two parallel simulations (e.g., simulation 2 and simulation 3) with the exception of simulation 1 in text for the dimers. The colours from red to blue correspond to the mobility from large to small.

Table S1. The high correlated regions with the absolute values of correlation coefficients larger than 0.6 for the receptor in the seven systems, derived from the last 100 ns trajectories of the three parallel all-atom MD simulations with 200 ns simulation times.

System	Simulation 1	Simulation 2	Simulation 3
Inactive δ-OR monomer	TM2-TM4	TM2-TM4	TM2-TM4
	TM3-ECL2	TM3-ECL2	TM1-TM7
	TM1-TM7	TM2-TM7	TM5-TM6
	TM5-TM6	TM5-TM6	TM6-TM7
	TM6-TM7	TM6-TM7	
	TM5-TM6	TM5-TM6	TM5-TM6
Inactive δ-OR monomer	TM2-TM4	TM2-TM4	TM2-TM4
	TM1-TM6	TM1-TM6	
Active µ-OR monomer	TM5-TM6		TM5-TM6
	ТМ3-ТМ6	TM3-TM6	ТМ3-ТМ6
	TM1-TM7	1 M I - I M /	TM1-TM7
	TM5-TM6	TM5-TM6	
Inactive δ-OR protomer of I-I	TM2-TM3	TM2-TM3	TM5-TM6
dimer	TM2-TM4	TM2-TM4	TM2-TM3
Les stime of OD senses and I	TM2-TM4	TM2-TM4	TM2-TM4
lnactive μ-OR protomer of I-I dimer	TM3-TM6	TM3-TM6	ТМ3-ТМ6
	TM2-TM6	TM2-TM6	TM2-TM6
Inactive δ-OR protomer of A-I dimer	TM3-TM6	TM3-TM6	TM3-TM6
	TM3-TM4	TM3-TM4	TM3-TM4
	TM3-TM5	TM3-TM5	TM3-TM5
	TM3-ECL2		TM3-ECL2
Active μ-OR protomer of A-I dimer	TM2-TM7	TM2-TM7	TM2-TM7

Systems	Simulation 1	Simulation 2	Simulation 3
Inactive δ-OR monomer	90.3%	82.1%	89.7%
Inactive µ-OR monomer	89.6%	78.0%	80.5%
Active µ-OR monomer	85.8%	74.2%	76.1%
Inactive δ -OR protomer of I-I dimer	75.9%	68.6%	72.9%
Inactive µ-OR protomer of I-I dimer	63.5%	58.3%	60.3%
Inactive δ -OR protomer of A-I dimer	77.1%	75.8%	68.6%
Active µ-OR protomer of A-I dimer	64.7%	60.1%	59.3%

Table S2. The highest frequency of the pathway from the ligand-binding pocket to the G-protein binding region for the three parallel MDs.

Systems	Pathways	
Inactive δ-OR monomer	Val281 ^{6.55} -Val212 ^{5.37} -Tyr208 ^{5.33} -Phe218 ^{5.43} - Trp274^{6.48}-Asn310^{7.45}-Asn3 14 ^{7.49} -Thr99 ^{2.54} -Asn67 ^{1.50}	
Inactive δ-OR protomer of I-I dimer	Trp274 ^{6.48} -Val267 ^{6.41} -Asn310 ^{7.45} -Val266 ^{6.40} -Tyr318 ^{7.53}	
Inactive δ -OR protomer of A-I dimer	Phe218 ^{5.43} - Trp274^{6.48}-Asn310^{7.45}- Leu313 ^{7.48} -Tyr308 ^{7.43}	
Inactive µ-OR monomer	Val236 ^{5.42} -Phe239 ^{5.45} - Trp293^{6.48}- Cys292 ^{6.47} -Tyr326 ^{7.43} - Asn332^{7.49}	
Inactive μ -OR protomer of I-I dimer	Ile322 ^{7.39} -Pro295 ^{6.50} -Thr327 ^{7.44} -Leu331 ^{7.48} -Val334 ^{7.51}	
Active µ-OR monomer	Tyr148 ^{3.33} -Ile296 ^{6.51} - Phe289^{6.44}- Cys251 ^{5.57} -Arg165 ^{3.50} -Leu339 ^{7.56} -Asp1 64 ^{3.49}	
Active μ -OR protomer of A-I dimer	Trp293 ^{6.48} -Ile296 ^{6.51} -Thr153 ^{3.38} -Phe156 ^{3.41} -Val285 ^{6.40} - Tyr336 ^{7.53} -Ser16 2 ^{3.47} -Tyr166 ^{3.51}	

Table S3. The pathways from the ligand binding site to the G-protein binding pocket with the highest frequency. The residues located in the Na+ and water pocket are highlighted in bold font.

 Table S4. The highest frequency of the allosteric pathway between the two subunits in the heterodimers for the three parallel MDs.

Systems	Simulation 1	Simulation 2	Simulation 3
I-I dimer	57.6%	48.9%	53.7%
A-I dimer	54.3%	60.1%	52.8%

Table S5. The pathways between the two subunits with the highest frequency in the heterodimers. The residues located in the Na+ and water pocket are highlighted in bold font.

System	Pathway
I-I dimer	Thr279 ^{6.34} (µ-OR)-Tyr166 ^{3.51} (µ-OR)-Ile278 ^{6.33} (µ-OR)- Tyr336 ^{7.53}
	(μ -OR)-Leu69 ^{1.52} (δ -OR)-Arg76 ^{1.59} (δ -OR)-Ile352 ^{8.59} (μ -OR)-Phe
	$320^{7.55}(\delta$ -OR)- Asn324 ^{7.49} (δ -OR)-Thr260 ^{6.34} (δ -OR)
	Pro295 ^{6.50} (μ-OR)-Val286 ^{6.41} (μ-OR)-Asn328 ^{7.45} (μ-OR)-Thr120 ^{2.}
A-I dimer	⁵⁷ (μ-OR)-Asn86 ^{1.50} (μ-OR)-Tyr308 ^{7.43} (δ-OR)-Ala305 ^{7.40} (δ-OR)-
	Phe270 ^{6.44} (δ-OR)-Leu139 ^{3.43} (δ-OR)