Electronic supplementary information to:

Exploring the electrochemical properties of hole transporting materials from first-principles: an efficient strategy to improve the performance of perovskite solar cells

Jidong Deng, Weixia Hu, Wei Shen, Ming Li, Rongxing He*

Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. E-mail: <u>herx@swu.edu.cn</u>

Table Captions

Table S1 Calculated molecular orbital energy levels (HOMO and LUMO, eV) and band gap for molecule X60 with different functional in CH_2Cl_2 .

Table S2 Calculated molecular orbital energy levels (HOMO and LUMO) as well as the HOMO–LUMO energy gap of all the molecules at level of BMK/6-31G(d) in CH₂Cl₂.

Table S3 Calculated wavelength of maximum absorption λ max (nm) and corresponding first excitation energy E (eV) of molecule X60 in CH₂Cl₂ with PBE0/6-31G(d) geometries.

Table S4 The crystallographic data of all the HTMs.

Scheme	НОМО	LUMO	Band gap	
Exp ^a	-5.16	-2.20	2.96	
BMK/6-31G(d)	-5.15	-0.28	4.87	
PBE0/6-31G(d)	-4.78	-0.93	3.85	
B3LYP/6-31G(d)	-4.55	-0.99	3.56	
M06/6-31G(d)	-4.94	-1.05	3.89	
M06-2X/6-31G(d)	-5.87	-0.42	5.45	

Table S1 Calculated molecular orbital energy levels (HOMO and LUMO, eV) and band gap for molecule X60 with different functional in CH₂Cl₂.

^a Experimental value from Ref. 24.

Table S2 Calculated molecular orbital energy levels (HOMO and LUMO) as well as the HOMO–LUMO energygap of all the molecules at level of BMK/6-31G(d) in CH_2Cl_2 .

Compounds	$\epsilon_{\text{HOMO}} \left(eV \right)$	$\epsilon_{LUMO} (eV)$	$\Delta \epsilon (eV)$		
X60	-5.15(-5.16) ^a	-1.98	3.17		
X59	-5.15(-5.15) ^b	-2.03	3.12		
ST2	-5.14	-1.97	3.17		
ST	-5.16	-2.02	3.14		
HT2	-5.12	-1.95	3.17		
HT	-5.15	-1.97	3.18		

^a Experimental value from Ref. 24. ^b Experimental value from Ref. 25.

Scheme	λ_{\max} (nm)	E(eV)
Exp ^a	388	_
PBE0/6-31G(d)	390	3.17
BMK/6-31G(d)	358	3.45
B3LYP/6-31G(d)	403	3.06
CAM-B3LYP/6-31G(d)	344	3.59
M06/6-31G(d)	391	3.16
M062X/6-31G(d)	348	3.55

Table S3 Calculated wavelength of maximum absorption λ_{max} (nm) and corresponding first excitation energy *E* (eV) of molecule X60 in CH₂Cl₂ with PBE0/6-31G(d) geometries.

^a Experimental value from Ref. 24.

Crysta Molecules syster	Crystal	Space	Ζ	<i>a</i> (Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)
	system	group							
X60	Triclinic	PĪ	2	10.520	16.297	20.958	68.652	80.004	71.759
X59	Monoclinic	$P2_{1}/n$	4	12.175	23.452	14.706	90.000	98.280	90.000
ST2	Triclinic	PĪ	2	16.158	19.127	17.549	53.430	75.626	60.513
ST	Triclinic	PĪ	2	17.505	17.614	10.460	70.597	59.432	54.087
HT2	Triclinic	$P\overline{1}$	2	13.954	17.384	18.001	86.333	78.081	71.441
HT	Triclinic	PĪ	2	29.479	13.250	13.033	120.393	120.519	110.437

Table S4 The crystallographic data of all the HTMs.

Figure Captions

Fig. S1 The optimized geometries of the investigated molecules in this work as obtained using the BMK/6-31G(d) method.

Fig. S2 The calculated crystal structures with the lowest total energies of the investigated molecules, and the centroid to centroid distances together with the angles of projected electronic coupling pathways relative to reference axis.

Fig. S1 The optimized geometries of the investigated molecules in this work as obtained using the BMK/6-31G(d) method.

X60 (*P*1 space group)

AOB 面

AOC 面

Fig. S2 Calculated crystal structures with the lowest total energies of the investigated molecules, and the centroid to centroid distances together with the angles of projected electronic coupling pathways relative to reference axis.