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Model details
Energy calculations
As stated in the main text, we consider a collection of dipoles whose position is fixed by the morphology 
of the material, as shown in Fig. S1. To determine the flipping probability of a dipole, we calculate the 
energy difference between the initial and final state using electrostatics. The electric field caused by 

neighboring dipole  at the position of  is given by:𝜇𝑗 𝜇𝑖

, Eq. S1
𝐸𝑖𝑗 =

1

4𝜋𝜖𝑟𝜖0𝑟3
𝑖𝑗

[𝜇𝑗 ‒ 3 ̂𝑟𝑖𝑗(𝜇𝑗 ⋅ ̂𝑟𝑖𝑗)]

with  the permittivity of the material and  the vector separating the two dipoles. These 𝜖𝑟𝜖0 𝑟𝑖𝑗 = 𝑟𝑖𝑗 ̂𝑟𝑖𝑗

interactions are calculated up to a certain cut-off distance . The long-range interactions outside  are 𝑟𝑐 𝑟𝑐

approximated using the reaction field method 1. This method assumes that the molecules within  induce 𝑟𝑐

a polarization in the surrounding material with dielectric constant . This polarization creates a reaction 𝜖𝑟

field at the position of the dipole:

, Eq. S2
⃗𝐸𝑅𝐹 =

2(𝜖𝑟 ‒ 1)

2𝜖𝑟 + 1
�⃗�

𝑟3
𝑐

with  the sum over all dipoles within . Including the applied field, the energy of dipole i then 
�⃗� = ∑

𝑖

𝜇𝑖
𝑟𝑐

reads

𝑈𝑖 =‒ ⃗ 𝜇𝑖 ⋅ ( ⃗𝐸𝑅𝐹 + ⃗𝐸𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + ∑
𝑗

𝑟𝑖𝑗 < 𝑟𝑐

𝐸𝑖𝑗).
Eq. S3

On top of the permanent dipoles  of the amide groups, we should also consider induced dipoles . 𝜇0  𝜇𝑖𝑛𝑑

Unlike the permanent dipoles, these induced dipoles are not restricted to only two fixed orientations, as 

they will lie along the direction of the local field :⃗𝐸𝑙𝑜𝑐

, Eq. S4⃗ 𝜇𝑡𝑜𝑡 = ⃗ 𝜇0 + ⃗ 𝜇𝑖𝑛𝑑 = ⃗ 𝜇0 + 𝛼 ∗ ⃗𝐸𝑙𝑜𝑐

with  the electronic polarizability. This local field is dependent on the surrounding dipoles, which in turn 𝛼

are dependent on their local fields. This leads to a self-consistent problem that is solved iteratively (see 
Fig. S2 for the convergence).
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Fig. S1. The geometry of BTA with typical distances given in nm.

Fig. S2. Convergence of the induced dipole calculation. Both the energy of the whole system and the 
induced dipole show an exponential convergence. 

Monte Carlo algorithm
The dynamical behavior of the system is simulated using a kinetic Monte Carlo method. The flipping 
probability  of a dipole is calculated by assuming thermal activation over an energy barrier:𝜈

   , Eq. S5

𝜈 = {𝜈0exp ( ‒
Δ𝑈
𝑘𝐵𝑇),  Δ𝑈 > 0

𝜈0,  Δ𝑈 ≤ 0 � 
with  the attempt frequency, which is taken to be a typical phonon frequency of the system,  the 𝜈0 𝑘𝐵𝑇

thermal energy, and  the energy difference between the initial and final state as calculated using the Δ𝑈

equations above.

The numerical algorithm is now as follows:
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1. Initialize the position and orientation of all dipoles, iteratively calculate the induced dipoles, and 
determine all flipping rates.

2. Use a weighted random choice based on the flipping rates to pick a dipole to flip.
3. Flip the chosen dipole and add  to the simulation time, with  a random number Δ𝑡 = ln (𝑥)/𝜈𝑡𝑜𝑡𝑎𝑙 𝑥

between 0 and 1, and  the sum of all individual flipping rates.𝜈𝑡𝑜𝑡𝑎𝑙

4. Update all induced dipoles and flipping rates.
5. Go back to step 2 until a stop condition is met.

This algorithm allows us to simulate the non-equilibrium dynamics of the dipoles with the correct time 
scales, both with and without applied field.

The total polarization of the system is calculated by summing the z-component of all permanent and 
induced dipoles. 

Boundary conditions
From the morphology as shown in Fig. 1 of the main text we find the position and orientation of the 
dipoles, which remain fixed during the simulations. We consider a capacitor structure as it is used in 
experiments, with the active material sandwiched between two parallel electrodes. Two different types of 
boundary conditions are therefore used. In the xy-plane parallel to the electrodes we take periodic 
boundaries, representing an infinitely large thin film. In the z-direction, perpendicular to the electrodes, 
we use the method of mirror images. The electrodes are assumed to provide perfect screening, so that 
each dipole is reflected in the ‘mirror’ of the electrode.

Parameters
In table S1 the set of default simulation parameters is given. Fig. S3 gives a schematic overview of the 
disorder parameters. The distance between the columns is  on average, but a random offset drawn from 𝑎

a parabolic distribution with width  is added. Each column is divided into subcolumns with length 𝜎𝑥𝑦𝑧

. Between two subcolumns there is a defect that consists of a translational offset in all three 𝑁 ± 𝜎𝑁

coordinates. The size of the offset is randomly drawn from a distribution with again width . Each 𝜎𝑥𝑦𝑧

subcolumn also has its own rotational angle and helicity.

Table S1. Default simulation parameters, corresponding to ‘medium’ disorder.

Parameter Value Unit
Helical pitch 6 molecules
OOP rotation 𝛽 40 degrees
Hexagonal packing distance 𝑎 1.67 nm
Interdisc distance 𝑐 0.35 nm

Morphology

Dipole distance from center L 0.28 nm
Subcolumn length N 15 molecules
Subcolumn length disorder  (Parabolic width)𝜎𝑁 2 molecules

Disorder

Positional disorder   (Parabolic width)𝜎𝑥𝑦𝑧 0.01 nm

Box size in the x direction 8 molecules
Box size in the y direction 8 molecules
Box size in the z direction (column length) 30 molecules

Simulation 

Interaction cut-off range 40 dipoles
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Total amount of dipoles 5760 dipoles
Permanent dipole moment 𝜇 4 D
Polarizability 𝛼 1 eÅ2/V
Temperature 𝑇 350 K
Phonon frequency 𝜈0 1 THz

Material

Effective permittivity 𝜖𝑟 2 -

The permittivity of a dipolar material like BTA has two main contributions: a dipolar and an electronic part. 
The dipolar part is substantial and is the cause of the high permittivity found in ferroelectrics. However, 
we can ignore this part, because we explicitly calculate the interactions between the dipoles. The 
electronic contribution to the permittivity is smaller, but this is the effective permittivity we need to use 
for our electrostatic calculations. Based on previous DRS measurements2 and simulation work we estimate 
a value of  2.𝜖𝑟 =

Fig. S3. Schematic representation of the way disorder is introduced in the system. The dots indicate the 
helicity and rotational angle of a subcolumn.
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Permanent and induced hysteresis loop
As stated in the main text, the polarization has two components, that of the permanent and induced 
dipoles. As shown in Fig. S4, both components show hysteretic behavior. In the loop of the induced dipole 
there is also a linear background that corresponds to the dipole moment induced by the applied field. In 
experiments this background is corrected with the Double-Wave Method (DWM), which uses two field 
pulses in succession: one to measure the switching polarization plus the non-switching background, and 
one to measure only the non-switching background. To enable comparison with the experiments, we also 
subtract the background from the simulated loops.

Fig. S4. The different contributions to the polarization hysteresis loop. The permanent (black) and induced 
(red) dipoles add up to the total polarization (green). Subtraction of the linear background gives the final 
loop (blue). 
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Depolarization curves

T(K)
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4
P

t (ms)

Fig. S5. Depolarization curves for different temperatures, fitted to Eq.(2).
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Full flip mode and the 2:1 state
For the full flip mode, we have also calculated the coercive field as a function of both temperature and 
frequency. Fig. S6 shows the equivalent of Fig. 3 in the main text, now with the simulation restricted to 
the full flip mode. 

Fig. S6. The coercive field as a function of frequency and temperature from simulations with the full flip 
mode (symbols). The surface is a fit to the data of Eq. (1) with  eV/nm3,  nm3, and fixed  𝑤𝑏 = 0.89  𝑉 ∗ = 1.12

 mC/m2 and THz.𝑃𝑠 = 48 𝜈0 = 1

In the main text (Fig. 5) it was shown that there exists a shoulder in the hysteresis loop of the full flip mode, 
corresponding to a 2:1 state of the dipole helices. A snapshot of this state is shown in Fig. S7. The shoulder 
can be explained by considering the energy landscape in Fig. S8. We know from literature that the 1:2 and 
2:1 states are energetically favorable over the 3:0 and 0:3 if there is no externally applied field3–5, which 
results in the energy landscape in Fig. S8(a). It has four potential wells, an energy difference of  between 𝑑𝐹

the 3:0 and 2:1 state, and an energy barrier  which is assumed to be equivalent between all states. 𝑊𝑏

Starting in the 3:0 state, this energy barrier prevents the transition to the 2:1 state provided the thermal 
energy is small. When an electric field is applied, the barrier will at some point become small enough to 
be overcome by thermal fluctuations and the system will go to the 2:1 state (Fig S8(b)). Now also the next 
barrier can be overcome, and the system will immediately transition into the 1:2 state, which is the global 
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energy minimum at that point. The system remains in this state, which corresponds to the shoulder in the 
hysteresis loop, until the field is increased sufficiently to make the 0:3 state the most favorable (Fig S8(c)). 

It is worth to note that the shoulder becomes more pronounced when disorder is absent, see Fig S9. This 
can be explained with the same argument as was used in the main text to explain the increased slanting 
of the loops with increasing disorder. Due to the disorder, there are no longer two well-defined fields at 
which the whole system will switch from 2:1 to 1:2 to 3:0, but there will be a distribution in these coercive 
fields. These distributions will slightly overlap, leading to a less pronounced shoulder in the disordered 
case of Fig. 5(b).

Fig. S7. A snapshot of the simulation while it is in the 1:2 state, showing (a) the whole box and (b) a single 
column. Each dot represents a dipole, and its color indicates whether it is pointing up (black) or down 
(yellow).



11

Fig. S8. Free energy landscape with the four possible polarization states. From (a-c) the applied field is 
increased to favor the 0:3 positive polarization state. (a) The initial 3:0 state with negative polarization. 
The energy barrier between states is  and the energy difference between the 3:0 and 2:1 states is . 𝑊𝑏 𝑑𝐹

(b) When the applied field is slightly increased, the system will go through the 2:1 state and end up in the 
1:2 state. (c) When the field is further increased, the 0:3 state is reached.
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Fig. S9. Hysteresis loop for the full flip mode in a system without disorder.

Molecular dynamics simulations
Computational Details 
All molecules were optimized within the density functional theory formalism using the Gaussian software 
package;6 the Ante_R.E.D. program7-9 with B3LYP/cc-pVDZ was used to calculate ESP charges; topology 
and initial coordinate files were generated by the LEaP program with a general amber force field (GAFF).10 
The system was first minimized to find the appropriate box size in the z-direction, after which it ran for 10 
ns in an NVT ensemble at 300 K using Langevin dynamics. Subsequently, we applied a series of electric 
fields with different strengths (0.001, 0.01, 0.035, 0.065, 0.11, 0.22, 0.28, 0.36, 0.43, and 1.0 V/nm) in both 
(+) and (-) directions with respect to the z-axes, and we let the MD simulations run again in NVT ensemble 
at 300 K for about 70 ns with a time step of 2 fs per step. The trajectories were recorded every 5000 steps 
and the cut-off was set to 12 Å for non-bonded interactions. All MD simulations were carried out using 
either Amber 14 or Amber 16 force field.11,12

We constructed two BTA self-assemblies: one made of 22 BTA molecules in order to have a 3:0 rotamer 
(with minimized distance between BTA molecules being 3.316 Å), and the second made of 24 BTA 
molecules to have a 2:1 rotamer (3.356 Å per one BTA). The 22 and 24 BTAs were chosen to be able to 
apply periodic boundary conditions, and since the BTAs are twisted about 60° with respect to each other 
to keep the hydrogen bond network, the number must be a multiple of two and six for 3:0 and 2:1, 
respectively. Although our simulations started from P-helical BTA H-network conformation (clockwise, 
where BTA helicity is right-handed to form hydrogen bonds with the residues under and above, Fig. 5 in 
the main text), assemblies may adopt both P- or M-helicity (anti-clockwise with left-handed helicity).

In order to evaluate MD simulations, we chose three dihedral angles (φ1, φ2, φ3) to follow the 
conformations 3:0 vs. 2:1, and P vs. M. At the very beginning of the MD simulations, all C=O and N-H 
moieties pointed below and above the plane, respectively, with dihedral angles being around 30° for 3:0 
rotamer in P- conformation. For the 2:1 rotamer in P-conformation, one C=O was oriented in the opposite 
direction (above the plane) with respect to the other two moieties, therefore the corresponding dihedral 
angles were around -150°, 30° and 30°. 

3:0 state
External electric field (EE) applied in the (+)-direction had no effect on the assembly as the system still 
remained in the 3:0 orientation, whereas the (-)-direction of EE switched the orientation from 3:0 to 0:3 
rotamer. Indeed, after applying EE = 0.22 V/nm, dihedral angles switched from around 30° to -30° (Fig. 
S10a). All C=O moieties switched at the similar moment. Moreover, the helicity was changed from P to M. 
Lower electric fields (below 0.11 V/nm) had no significant effect on the dihedral angles. 

2:1 state with electric field in (+)-direction
No specific effects were observed with EE below 0.28 V/nm. Only electric field of 0.36 V/nm induced a 
change from the 2:1 to 3:0 rotamer keeping the same helicity. Considering the values of dihedral angles, 
φ1 and φ2 remained unaffected, hence their values were still around 35°. The φ3 turned from around -
145° to 35°; in other words the C=O moiety turned about 180° and a higher EE was required to induce this 
change compared to the 3:0 rotamer, for which the dihedral angles turned only by about 60° and slightly 
lower EE was sufficient to induce the switch.

2:1 state with electric field in (-)-direction
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Although no specific macroscopic effects were seen for EE below 0.28 V/nm as we still kept the 2:1 P-
conformer, small microscopic changes were observed. First, one of the three dihedral angles of one of the 
residues in the stack changed from around -145° to 35°, then the second one remained around 35°, and 
finally the third one went from 35° to -145° (Fig. S10b). This went with a twist of the residue to keep the 
network of hydrogen bonds with the adjacent molecules. Intermediate states exist at E = 0.36 V/nm; in 
other words both 0:3 P-helical BTA (dihedral angles being around -145°) and M-helical BTA (dihedral angles 
being around -35°) were observed. One half of the 24-stacked self-assembly remained in the anti-clockwise 
orientation, whereas the other half switched to the clockwise orientation. Since the electric field is not 
high enough to keep a favorable orientation and helicity, some of the residues may have gotten from P- 
to M- and back from M- to P-helical BTA (Fig. S10d). Other residues switched to 1:2 rotamer orientation 
with or even without favorable H-bonding systems. These intermediate states occurred only for a short 
time. When the external electric field increases to 0.43 V/nm, no intermediate states exist anymore and 
the self-assembly is fully switched from 2:1 to 0:3 with anti-clockwise helicity. Here, all three C=O moieties 
underwent a change of their dihedral angles (from -145° to -30°, 30° to -30° and 30° to -30°), which 
required slightly higher field then the previous case of 2:1 rotamer with electric field in (+)-direction.
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The effect of disorder

Fig. S11. The coercive field as a function of temperature and frequency for two different cases of disorder. 
The high disorder case (rainbow) has a subcolumn length of , the no disorder case (brown) has no 𝑁 = 7

subcolumns. Only a slight difference in coercive field is observed over the whole parameter range.
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Nucleation
In the main text the different effects of disorder on the retention and the coercive field is attributed to a 
difference in nucleation mechanism. During a hysteresis loop, nucleation occurs at the electrodes, while 
during depolarization it occurs at defects. This can be explained by looking at the energy landscape in Fig. 
S12. It shows for each dipole, within a specific column with a defect, how much energy it would cost to flip 
it. The black baseline, which corresponds to all dipoles pointing in one direction, shows that a single dipole 
flip preferentially happens at the electrodes. A flip could also occur at the defect, but at a much lower rate 
since the flipping rate exponentially depends on the energy (see Eq. S5). 

During depolarization, so without applied field, if a dipole flips near the electrode (#1, vertical dashed red 
line) the red line in Fig. S12(a) is obtained. There is thus a very high chance that that dipole flips back to its 
original orientation in the next step of the simulation. The single flipped dipole at an electrode is thus 
unstable. In contrast, when a dipole flips near the defect (#43, vertical dashed blue line), there is a 
significant chance that in the next step a neighboring dipole will flip as well as seen from the peak in the 
dashed blue curve for dipole #48. From these two dipoles, the nucleus can grow further. So even though 
flipping at the defect is less frequent than at the electrodes, only flipping at a defect will result in a stable 
nucleus, and polarization reversal will thus occur through nucleation at the defect.

This picture changes when an electric field is applied, such as during the measurement of a hysteresis loop. 
Now the red line in Fig. S12(b) shows that after the initial flip at the electrode, there are two neighboring 
dipoles (#4 and #6) that will most likely flip in the next steps. A stable nucleus can now be formed at an 
electrode. Flipping near the defect still results in a stable nucleus as well but since a flip near an electrode 
is more likely to begin with, polarization reversal will now occur through nucleation at the electrodes.

After this first nucleation step, the nucleus needs to grow further until it reaches the critical size threshold, 
after which the rest of the column flips near instantaneously. This critical nucleus is slightly smaller when 
a field is applied, which we speculate to be the cause of the different observed attempt frequencies, as 
discussed in the main text and Fig. 6.
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Fig. S12. Energy needed for flipping a single dipole as a function of position in a column for the situation 
(a) without and (b) with applied field of 1 GV/m. A more positive energy means that a dipole is energetically 
more favored to flip. The column is schematically shown above the graphs (not to scale), with electrodes 
at both ends and a defect in the middle. The black curve is for all dipoles in one direction, the red and blue 
dashed curve correspond to the energies after flipping a dipole at the electrode (#1, vertical dashed red 
line) and the defect (#43, vertical dashed blue line) respectively.
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Ground state
There are several ways to obtain the ground state of the system. The first is to let a simulation of the 
depolarization process run until equilibrium is reached (with  0). Due to computational constraints, 𝑃 =

this is only possible for highly elevated temperatures where the depolarization process is fast. We 
therefore first let the system depolarize at 2000 K and subsequently let it stabilize at 350 K. However, this 
might not result in the true ground state as 2000 K might be above the Curie temperature of the system. 
We therefore also run a simulation starting from a  0 state with all dipoles randomly oriented, and let 𝑃 =

it run at 350 K until again an equilibrium is reached. Both methods gave nearly identical results, suggesting 
that it truly is the ground state that is obtained.

We can use correlation coefficients to characterize the interactions in the ground state in Fig. 7. The 
correlation coefficient of a dipole i is given by:

𝐶𝑖 = 𝜎𝑖∑
𝑗𝜖𝑁𝑁

𝜎𝑗 Eq. S6

where the sum goes over all (next) nearest neighbors. When the correlation coefficient is negative, 
neighboring dipoles tend to be antiparallel, as shown in Fig. S12(a). 

Fig. S13. Correlation coefficients in the depolarized ground state. (a) Graphical representation of the 
possible values of the correlation coefficient. (b,c) Histogram of the nearest neighbor (NN) and next 
nearest neighbor (NNN) correlation coefficients for the ground state in Fig. 7. Both the no disorder case 
(no subcolumns) and the high disorder (mean subcolumn length ) are shown.𝑁 = 7
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Fig. S14. Domain structure obtained after full depolarization in a system with a high disorder. A tilted top 
view is chosen to show the partially polarized columns.
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