Isomerization of cyanopropyne in solid argon

Thomas Custer,^{*}^a Urszula Szczepaniak,^{a,b,e} Marcin Gronowski,^a Nathalie Piétri,^c Isabelle Couturier-Tamburelli,^c Jean-Claude Guillemin,^d Michał Turowski,^a and Robert Kołos ^a

- a. Institute of Physical Chemistry, Polish Academy of Sciences,
- Kasprzaka 44/52, 01-224 Warsaw, Poland.
- b. Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
- ^c UMR CNRS 7345, Physique des Interactions Ioniques et Moléculaires, Equipe ASTRO, Aix-Marseille Université, Case 252, Centre de St-Jérôme, 13397 Marseille cedex 20, France.
- d. Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226,F-35000 Rennes, France.
- e. Current address: IRsweep AG, Laubisruetistrasse 44, 8712 Staefa, Switzerland

Electronic Supplementary Information

Table of Contents

APPENDIX 1-SYNTHESIS	4
APPENDIX 2-COMPUTATIONS ON THE GROUND STATE POTENTIAL ENERGY SURFACE	4
ISOMERIZATION.	
Fig. S1	
Fig. S2	5
Fig. S3	6
ELECTRON DETACHMENT	6
Fig. S4	7
HETEROLYTIC BOND CLEAVAGE (DEPROTONATION)	7
Fig. S5	7
Fig. S6	8
HOMOLYTIC BOND CLEAVAGE	
Fig. S7	8
Table S1	8
Hydrogenation.	9
Fig. S8	
C₄H₃N ⁺ FAMILY	
Table S2	
Table S3	
C4H2N ⁻ FAMILY	
Table S4	
Table S5	
C ₄ H ₂ N family	15
Table S6	
Table S7	
C4H4N ⁺ FAMILY	
Table S8	
Table S9	
C4H4N FAMILY	
Table S10	
Table S11	
SINGLET C4H3N FAMILY (¹⁴ N/ ¹⁵ N COMPARISON)	
Table S12	
Table S13	
Table S14	
Table S15	

Table S16	
Table S17	
TRIPLET C4H3N FAMILY (¹⁴ N/ ¹⁵ N COMPARISON)	
Table S18	
Table S19	
Table S20	
Table S21	
Table S22	
Table S23	
APPENDIX 3-PHOTOPRODUCT DETAILS	
Allenyl cyanide (2)	
Fig. S9	
Fig. S10	
Fig. S11	
Fig. S12	
Fig. S13	
Fig. S14	
PROPARGYL CYANIDE (3)	
Fig. S15	
- Fig. S16	
Fig. S17	
Fig. S18	
Fig. S19	
Fig. S20	
Fig. S21	
Fig. S22	
Allenyl Isocyanide (6)	
Fig. S23	
Fig. S24	
Fig. S25	
Fig. S26	
Fia. S27	
Fia. S28	
Fig. \$29	
Fig. \$30	
Fig. S31	64
PROPARGYL ISOCYANIDE (10)	
Table \$24	65
Table \$25	66
Fig. \$32	66
Fig. 532	67
Fig. 534	67
Fig. \$35	68
Fig. 535	68 68
Fig. \$27	60 60
Fig. 527	69 69
Fia \$39	03 70
Fig. \$40	70
Γία SΔ1	
гну, 542Ега САЭ	
1 19. 342	1/ רד
ГIY. 343	/2
гіу. 544	

1,2,3-BUTATRIEN-1-IMINE (4)	73
Fig. S45	
Fig. S46	
Fig. S47	
Fig. S48	
Fig. S49	
Fig. S50	
Fia. S51	
1-ISOCYANO-1-PROPYNE (9)	
Fig. \$52	
Fig. \$54	
Eig. \$55	
Eig. \$56	
Fig. \$57	80
3-CYANOCYCI ODRODENE (8)	
Table \$26	
Fig. \$58	
Fig. 550	
Fig. 559	02 دە
Fig. 560	02
Fig. 501	53
Fig. 562	
Fig. 563	
I-CYANO-2-PROPENEYLIDENE (TRIPLET) (19)	
Fig. S64	
Fig. S65	
Fig. 566	
Fig. S67	
Fig. S68	86
Fig. S69	87
ACETYLENE	87
Fig. S70	87
FULL SPECTRA	88
Fig. S71	88
Fig. S72	88
Fig. S73	89
Fig. S74	89
Fig. S75	
Fig. S76	
PPENDIX 4-RATE COEFFICIENTS AND EXCITED STATE POTENTIAL ENERGY SURFACE	
	-
Table 527	
Fig. S77	
Fig. S78	
Fig. S79	
Fig. S80	
Fig. S81	
Fig. S82	
Fig. S83	
Fig. S84	
FERENCES	94

Appendix 1-Synthesis

Chemical Handling and Synthesis Methods for synthesizing the parent cyanopropyne (**1**) have been described recently^{1, 2} and involve a two-step sequence starting from the reaction of methyl 2-butynoate with aqueous ammonia (28%) to produce an amide, followed by the dehydration of this amide on phosphorus pentaoxide under vacuum conditions. The ¹⁵N isotopologue of cyanopropyne (**1**) employs the same steps but replaces aqueous ammonia, having normal isotopic abundances, with ammonia-¹⁵N. Methods for synthesizing isonitriles **6**^{3, 4} and **10**³ have also been described recently and require heating a mixture of N-2-propyn-1-yl formamide combined with p-toluenesulfonyl chloride and trioctylamine in excess to 80 °C under vacuum to form propargyl isocyanide (**10**). To form allenyl isocyanide (**6**) the propargyl isocyanide product **10** is trapped on KOH and allenyl isocyanide (**6**) is further distilled under vacuum^{4, 5}. Allenyl cyanide (**2**) and propargyl cyanide (**3**) can be formed in good yield by flash vacuum pyrolysis of allenyl isocyanide (**6**) and propargyl isocyanide (**10**) respectively at 700 °C ⁶. Although all of these chemicals should be treated with care, particular caution should be used in working with isomers **3** and **6**. At room temperature, both are potentially explosive in their pure form.

A brief comment regarding purity, storage, and handling of these chemicals specific to these FT-IR and matrix isolation measurements is helpful. Our FT-IR measurements indicate that in samples of ¹⁴N-1 and ¹⁵N-1, which are white solids which melt near room temperature to form a clear liquid, the only observable bands not associated with these species themselves come from trace impurities inherent to our experimental apparatus (e.g., leaks in the vacuum system giving rise to CO₂ or H₂O signals or trace impurities in Ar gas used for forming matrices). Samples of 2 were found to contain traces of 3 on the order of a percent. Both 1 and 2 seem to be safely storable in small amounts in evacuated glass containers for long periods without significant decomposition (storage at -20 °C for 1 and storage at -78 °C in dry ice for 2). Samples of 6 were contaminated with 10 and vice versa although both also appear to be stable stored in small quantities in an evacuated vessel at -78 °C for extended periods. Propargyl cyanide (3) is much less stable. Although fresh samples can be quite pure, significant contamination with 2 and even minimal contamination by 1 have been observed. The origin of these impurities may be partly synthetic as a chain of reactions starting from allenyl isocyanide (6) and proceeding through propargyl isocyanide (10) is used in its synthesis. The presence of 1 may also be due to contamination of equipment from previous experiments working with 1. We have also observed that prolonged (a period of several weeks) storage of small amounts of 3 in an intially evacuated glass vessel at -78 °C resulted in its conversion into isomer 2, eventually followed by polymerization. Contamination of **3** by **2** could often be reduced by almost completely transfering a sample in-vacuo to a second vessel and using residual material from the first vessel for experiments. The successful use of this procedure suggests that 2 has a lower vapor pressure than 3. Sequential IR spectra show that concentrations of the gas phase species placed in a glass gas-cell at low pressures decrease in concentration over time and at different rates.

Propargyl cyanide (3-Butynenitrile) 3. ¹H NMR (C₆D₆, 400 MHz) δ 1.70 (₁H, ⁴J_{HH} = 2.9 Hz, CH); 2.27 (2H, ⁴J_{HH} = 2.9 Hz, CH₂). ¹³C NMR (C₆D₆, 100 MHz) δ 8.53 (¹J_{CH} =139.4 Hz, (t), CH₂), 72.2 (²J_{CH} = 51.3 Hz, (d), CCH); 72.7 (¹J_{CH} = 254.6 Hz, (d), CH); 114.8 (s, CN).

Allenyl cyanide (2,3-Butadienenitrile) 2. ¹H NMR (C₆D₆, 400 MHz) δ 4.33 (m, 2H, CH2); 4.37 (m, 1H, CH). ¹³C NMR (C₆D₆, 100 MHz) δ 67.2 (¹J_{CH} = 183.4 Hz, (d), CH); 79.7 (¹J_{CH} = 171.6 Hz, (t), CH₂); 112.9 (s, CN); 218.0 (s, C=C=C).

Cyanopropyne-¹⁵**N** (2-Butynenitrile-¹⁵**N**) 1¹⁵**N**. ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (s, 3H, CH₃). ¹³C NMR (CDCl₃, 100 MHz) δ 4.25 (¹JC_H = 133.5 Hz (q), CH₃), 54.7 (qd, ³J_{CH} = 8.7 Hz, ²J_{CN} = 4.4 Hz, C-Me), 83.4 (qd, ²J_{CH} = 11.0 Hz, ³J_{CN} = 8.0 Hz, C-CN), 105.4 (qd, ⁴J_{CH} = 3.7 Hz, ¹J_{CN} = 20.3 Hz, CN).

2-Butynamide-¹⁵**N.** ¹H NMR (DMSO-d6, 400 MHz) δ 1.92 (s, 3H, CH₃), 7.36 (d, 1H, ¹J_{NH} = 87.6 Hz, NH), 7.82 (d, 1H, ¹J_{NH} = 89.6 Hz, NH). ¹³C NMR (DMSO-d6, 100 MHz) δ 2.88 (q, ¹J_{CH} = 132.0 Hz, CH₃), 75.7 (dq, ²J_{CN} = 11.6 Hz, ³J_{CH} = 5.1 Hz, CCN), 82.4 (dq, ³J_{CN} = 1.4 Hz, ²J_{CH} = 11.0 Hz, C-Me), 154.2 (d, ¹J_{CN} = 18.9 Hz, C=O).

Appendix 2-Computations on the ground state potential energy surface

Isomerization. Production of new isomers is one of the most likely processes following photolysis of a species isolated in a noble gas matrix due to the "cage effect"⁷⁻⁹. While absorption of light of a certain energy by a species in the gas-phase or solution may result in cleavage of bonds and production of separated fragments, lack of any path for efficient exit of such a fragment from a matrix cage, depending on a number of factors, often makes it much less likely to occur. One very common isomerization reaction is conversion of cyano species to isocyano species. The transition states for this process on the ground state PES and connecting various pairs of C_4H_3N isomers are presented in Fig. S1. Taking into account the precision of B3LYP computations, the calculated activation energies for isomerization of **2** to **6** and from **3** to **10** are the same. The activation energy for isomerization of **1** to **9** is slightly higher. This is related to larger electron delocalization of pi electrons in **1** as compared to **2** and **3**.

Fig. S1. Transition states connecting cyanides with respective isocyanides and their activation energies. Numbers separated by a hyphen correspond to C4H3N isomers (PES minima depicted in Fig. 1) connected by the transition state.

Another frequently encountered isomerization process in rare gas photolysis experiments is a hydrogen shift. For CH_3C_3N , this means H atom movement along the CCCCN chain. Transition states for hydrogen shifts between a variety of isomers are presented in Fig. S2. No transition state directly linking **1** with **2** on the ground singlet PES was found. This reaction involves species **19**, as discussed later. Activation energies for hydrogen shift processes considered here range from 310 to 374 kJ/mol. We did not find any transition states directly linking cyclic isomers **7** and **8** with any of the isomers **1-6** or **9-11**.

Fig. S2. Transition states for hydrogen shifts along the CCCCN chain and their activation energies. Numbers separated by a hyphen correspond to C_4H_3N isomers (PES minima depicted in Fig. 1) connected by the transition state.

Fig. S3. Potential energy diagram depicting ground state species and transition states connecting them. No transition state was found connecting 7 or 8 to any other species. 19T is a triplet ground state and not a transition state. For further details about 19T see Fig. 7 of the main text or Appendix 4.

Electron detachment. Loss of one electron from a C₄H₃N isomer leads to a molecular cation C₄H₃N⁺. The electron can readily leave the matrix cage where it was originally released. The ultimate fate of both cation and electron in a matrix environment depends in a complicated way on experimental conditions, as well as the nature of the host, guest, ionic photoproducts, and even impurities/dopants^{10,11}. For now, it is important to answer the question as to whether an electron can be detached from various C₄H₃N family members at all. The production of H₃C-CC-CN⁺ from $\mathbf{1}$ in a noble gas matrix was demonstrated experimentally by Fulara et al.¹². They photolyzed $\mathbf{1}$ using a neon discharge lamp with an energy of ~1600 kJ/mol. This is far higher than the measured gas-phase ionization energy of 1 which has been reported as 1039 kJ/mol¹³. Our theoretical predictions give a value of 995 kJ/mol which is smaller than the measured one, but within the typical precision of DFT calculations (see adiabatic ionization energies in Fig. 1, main text). Isolation in a matrix environment often decreases the ionization potential of a species¹¹. Neglecting the reduction in ionization potential for our system in Ar for now, one-photon 248 nm (482 kJ/mol) or 193 nm (620 kJ/mol) laser photolysis cannot ionize any of the 12 lowest energy isomers depicted in Fig. 1. The microwave discharge hydrogen flow lamp (peak intensity at 121.6 nm or 984 kJ/mol) may have sufficient energy to ionize all isomers but 1, 3, 8, or 10 depending on the accuracy of the theoretical results. Of the pure chemicals we have available, only 2 and 6 have a chance of being ionized by this radiation. From an energetic point of view, only twophoton 193 nm absorption can lead to ionization of species 1. The structures of ionized species are presented in Fig. S4. Although molecular geometries corresponding to minima on the C₄H₃N⁺ and C₄H₃N potential energy surfaces are similar, their energetic order is significantly different. For the molecular cation, species 4⁺ has the lowest energy, closely followed by 5⁺ and more distantly by 11⁺, 12⁺ and then 2⁺.

Fig. S4. Structures of twelve $C_4H_3N^+$ isomers together with energies relative to **4**⁺. Results of B3LYP/aug-cc-pVTZ computations. Numbering reflects structural similarity to the respective neutral species of Fig. **1**. Adiabatic ionization energies (AIE) of the respective neutral C_4H_3N precursors calculated at the same level of theory are also given.

Heterolytic bond cleavage (deprotonation). Anions $C_3N^{-14, 15}$ and C_5N^{-16} , isoelectronic with their precursors, were shown to be formed in the course of HC₃N and HC₅N photolyses, respectively. Several isomeric anions may be considered as potential products of the photolysis of **1**. Our PES screening calculations resulted in 8 ground state singlet structures with energies lower than the global minimum on the triplet PES (165 kJ/mol for **A1**, H₂CCCCN⁻). The three highest energy isomers are separated from those below (Fig. S5) by a modest energy gap. Although H₂CCCCN⁻ (species **A1**, Fig. S5) seems to be the most stable anion, HCC-CH-CN⁻ (**A2**) has an energy only 13 kJ/mol higher, a difference smaller than the precision of our calculations. Regardless, such anions are not expected as products of photolysis of any of the C₄H₃N isomers, as deprotonation is a strongly endothermic process (1467 kJ/mol is predicted for dissociation of CH₃CCCCN⁻).

Fig. S5. Structures for $C_4H_2N^2$ anions optimized at the B3LYP/aug-cc-pVTZ level of theory along with their energy relative to the lowest energy isomer. Numbering does not imply structural similarity to species from previous Figs.

Dissociation of neutral isomers into H⁻ and a corresponding cation is even less likely. Without any free protons available in the matrix, production of protonated ions with $C_4H_4N^+$ composition by the addition of mobile H⁺ to available neutral species can be neglected. Nevertheless, calculations for such species may be of broader interest outside of this work and can be found below in Fig. S6.

Fig. S6. Structures for C₄H₄N⁺ isomers optimized at the B3LYP/aug-cc-pVTZ level of theory along with their energy relative to the lowest energy isomer. Numbering does not imply structural similarity to species from other Figs. in the main text.

Homolytic bond cleavage. Here, the lowest energy homolytic bond cleavage processes invariably involve C-H bonds. These processes are thermodynamically accessible at all photolysis wavelengths used in this study for all molecules depicted in Fig. 1 (main text). Unlike C-C bond cleavage, where the resulting fragments may have difficulty exiting a matrix cage, H atom is small and may readily migrate in the matrix leaving a bulky radical behind. While the PES for C_4H_2N is less complicated than for $C_4H_2N^-$ a number of minima could still be found. The lowest energy radicals are presented in Fig. S7. The radical H₂CCCCN, **R1**, is expected to be the lowest energy isomer although the energetic separation between **R1** and **R2** (HCC-CH-CN) is smaller than the precision of our calculations. We found six structures with energies smaller than 200 kJ/mol relative to **R1**. The abstraction of hydrogen from the C₄H₃N isomers which we have in pure form (i.e. **1**, **2**, **3**, **6**, and **10**) requires reaction enthalpies on the order of 350 kJ/mol.

Fig. S7. Structures for molecules of C₄H₂N composition optimized at the B3LYP/aug-cc-pVTZ level of theory along with their energy relative to the lowest energy isomer. Numbering does not imply structural similarity to species from previous Figs.

Table S1. The reaction enthalpy at 0 K for dissociation of selected C_4H_3N isomers organized in order of decreasing energy. Numbers in first column correspond to those in Fig. 1. For reference, the photon energies of the light sources used in these experiments are also given.

Parent Isomer	Products		ΔH 0 K (kJ/mol)	
	H ₂ discharge lamp (9	984 kJ/mol)		
1	H₃CCC	CN	650	
	193 nm Excimer Laser	(620 kJ/mol)		
11	H ₂ NCC	HCC	607	
1	H₃C	C₃N	558ª	
9	CH₃CC	CN	537 519	
11	NH ₂	HCCCC		
5	HCCNH	HCC	510	
9	CH₃	CCNC	510	
	248 nm Excimer Laser	(482 kJ/mol)		
8	cycl-C ₃ H ₃	CN	459	
2	2 H ₂ CCCH 10 H ₂ CNC		453	
10			451	
3	H ₂ CCCH	CN	417	

12	HCCNCCH (R7)	Н	374	
2	HCC-CH-CN (R2)	Н	355	
6	H ₂ CCCH	CN	355	
6	H ₂ CCNC (R5)	Н	355	
4	HCCCCNH (R3)	Н	354	
5	HCCCCNH (R3)	Н	354	
7	H ₂ CCCH	CN	354	
6	HCC-CH-NC (R4)	Н	352	
12	H₂CCN	HCC	352	
1	H ₂ CCCCN (R1)	Н	351	
9	H ₂ CCCNC (R5)	Н	351	
2	H ₂ CCCCN (R1)	Н	340	
10	H ₂ CCCH	CN	323	
10	HCC-CH-NC (R4)	Н	320	
3	HCC-CH-CN (R2)	Н	319	
11	HNCCCCH (R3)	Н	311	
5	HCC-CH-CN (R2)	Н	261	
4	H ₂ CCCCN (R1)	Н	254	
3	HCCCCN	H ₂	243 ^b	
8	cycl-CH-CH-C	HCN	195°	

a) The value could only be estimated, as DFT calculations were hampered by the proximity^{14, 17} of the ground and the lowest excited electronic state of C_3N .

b) The ground electronic state of HCCCCN is of triplet multiplicity. The activation energy on singlet PES is 360 kJ/mol.

c) The activation energy for this reaction is 269 kJ/mol.

Observing products of C-C bond breakage in a cryogenic matrix, following the separation of two bulky fragments, is generally not likely. Should a C-C bond break, the resulting fragments would more likely recombine, a situation dealt with here under isomerization. Nevertheless, the production of CN radical has been observed upon photolysis of gas-phase HC₃N, albeit with a low quantum yield¹⁸. It has also been observed upon photolysis of NCCN in an Ar matrix¹⁹. While it is unlikely that the CN radical would be able to leave the matrix cage in which it is formed, such an event cannot be ruled out completely. The occurrence of chain elongation reactions, which have also been reported for matrix-isolated nitriles, may depend on mobility of larger molecular fragments driven out of their matrix cage and on excess energy provided by light.²⁰ With this in mind, possibilities for C-C bond dissociation should at least be considered. The reaction enthalpies at 0 K for gas-phase homolytic bond breakage of precursors 1-12 are collected in Table S1. In addition to the requirement that precursors possess excited states amenable to absorption of a photon of a particular energy, a necessary condition for these endothermic reactions to occur is that the photon energy surpass the dissociation energy in addition to any activation energy and some excess energy required to exit a particular matrix cage. We have checked that excited state PESs do not cross the ground state PES for the processes listed in Table S1. Therefore, these reactions are not expected to occur for photon energies below that of the respective ground state dissociation enthalpy. The only two dissociation reactions requiring activation are marked in Table S1 with their respective activation energies given in the footnote. The majority of the processes collected in Table S1 are simply loss of a hydrogen atom. A few exceptions include loss of CN for species such as 6, 7, and 10, the loss of CCH from amine 12, loss of H_2 from 3, and loss of HCN from cyclic species 8. Reactions involving species 1 are the most likely to be observed here. Irradiation by the excimer laser using either 193 nm (620 kJ/mol) or 248 nm (482 kJ/mol) should not dissociate 1 into H₃CCC and CN or CH₃ and C₃N. Ignoring details of the excited state PES and the matrix cage effect, these processes cannot be excluded for the H_2 discharge lamp.

Hydrogenation. H atoms may appear following photolysis of **1** or other isomers (see discussion of homolytic bond cleavage) or of unavoidable impurities and may then migrate through the matrix and attach to other species. The most stable molecules of C_4H_4N composition are presented in Fig. S8. Rotamers **H1** and **H2** are separated by only 3 kJ/mol which is not significant, given the precision of our calculations. Both can be considered as the products of hydrogen atom addition to allenyl cyanide, **2**. The calculated energies of these endothermic reactions are 262 and 259 kJ/mol respectively.

Fig. S8. Structures for molecules of the C₄H₄N composition, optimized at the B3LYP/aug-cc-pVTZ level of theory, along with their energies relative to the lowest energy isomer. Numbering does not imply structural similarity to species from previous Figs.

C₄H₃N⁺ family

Table S2-Frequencies (unscaled) and intensities for C₄H₃N⁺ isomers. Corresponding structures in Fig. S4.

r											
1* 2*		2*	3⁺			4+		5⁺	6+		
freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.
cm ⁻¹	km/mol	cm-1	km/mol	cm-1	km/mol	cm⁻¹	km/mol	cm ⁻¹	km/mol	cm⁻¹	km/mol
135	1	128	6	138	3	126	10	136	4	126	2
136	3	273	8	265	15	133	11	235	126	203	6
248	78	334	11	333	9	282	133	353	31	265	5
350	9	343	6	338	9	379	0	365	8	297	9
446	37	503	108	581	3	400	135	431	9	424	51
509	1	565	6	642	8	415	0	595	121	562	14
518	19	801	27	696	40	493	2	620	10	812	5
683	1	865	51	752	27	551	0	677	16	881	25
921	29	924	30	888	50	745	5	697	22	934	36
1229	26	965	21	1010	39	860	37	716	38	987	17
1235	22	1109	5	1118	0	990	1	974	8	1169	6
1311	125	1313	51	1231	167	1331	22	1146	2	1330	44
1420	8	1386	14	1286	144	1449	8	1382	14	1414	22
2027	527	1745	60	2056	1037	2058	129	2079	123	1826	20
2280	24	2192	377	2293	486	2303	772	2298	308	2065	793
2903	284	3051	190	2832	111	3121	78	3143	51	3050	176
3020	64	3098	57	2872	174	3216	34	3405	119	3118	33
3021	65	3125	92	3358	146	3704	1305	3692	1043	3122	85

7+		8+		9+		10+		11+		12+	
freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.
cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm⁻¹	km/mol	cm⁻¹	km/mol	cm ⁻¹	km/mol	cm⁻¹	km/mol
176	1	145	2	127	1	129	0	145	15	143	9
195	1	198	17	142	5	269	0	154	18	151	8
352	0	232	8	236	45	289	19	304	1	350	1
479	11	401	15	262	2	330	1	393	0	378	1
534	1	544	8	393	49	503	22	500	3	445	0
662	25	670	50	445	29	687	43	520	2	468	0
731	12	699	9	475	3	774	15	661	190	685	28
953	36	793	42	705	5	866	11	693	38	708	34
953	6	826	12	915	21	944	61	705	23	784	14
1035	12	929	38	1241	23	1097	25	754	0	814	45
1086	45	1007	16	1270	17	1265	6	1138	3	985	1
1193	54	1113	6	1312	109	1322	334	1439	9	1323	40
1293	102	1308	1	1431	6	1454	13	1636	61	1425	0
1637	8	1752	1	1957	822	2075	1703	2061	364	2048	289
2214	284	2133	220	2297	64	2219	144	2251	4	2153	177
2912	208	3146	32	2901	226	3043	24	3397	160	3122	108
2939	62	3183	170	3026	49	3131	0	3452	379	3224	51
3227	86	3319	148	3031	54	3382	113	3549	167	3402	134

Table S2 (cont.)-Frequencies (unscaled) and intensities for C₄H₃N⁺ isomers. Corresponding structures in Fig. S4.

 $\label{eq:source} \textbf{Table S3-} Coordinates of optimized structures of C_4H_3N^+ isomers. Corresponding structures in Fig. S4.$

4+	5+	11+
H,1.663398479,3.0735378321,0.	C,-2.3583158817,-0.4356349581,-0.0212446596	C,2.6805217867,-0.0000003384,-0.0123432677
N,1.1854474803,2.1895460741,0.	C,-1.2788497181,0.1291613175,-0.0059429351	C,1.4595336099,-0.0000002111,0.014192982
C,0.6359710993,1.1734096013,0.	C,-0.0869184506,0.7977580106,0.006638342	C,0.1365805533,-0.0000000731,0.0429422605
C,0.0065433841,0.0094068395,0.	C,1.11068486,0.1160104441,0.1489335586	C,-1.1005390087,0.000000056,0.0698379708
C,-0.5823779581,-1.0797630491,0.	N,2.114890921,-0.4286703026,0.2649520484	N,-2.3791770149,0.0000001894,0.0976405691
C,-1.2193728195,-2.2577568988,0.	H,2.9931298772,-0.9083288226,0.3703509316	H,-2.9083683488,-0.8679384319,0.1091487814
H,-1.4813319795,-2.7422063149,0.934156848	H,-0.0280542903,1.8776536258,-0.0929977757	H,-2.9083681677,0.867938921,0.1091487814
H,-1.4813319795,-2.7422063149,-0.934156848	H,-3.3047243176,-0.9293813147,-0.0348015103	H,3.7486446171,-0.0000004499,-0.0355562847

Table S3 (cont.)-Coordinates of optimized structures of C₄H₃N⁺ isomers. Corresponding structures in Fig. S4.

12+	2+	1+
C,-0.0071700509,-2.4440547569,0.2027205419	C,-2.1435927957,-0.7199805013,0.0168556717	N,-2.5315763626,-0.5036699294,0.
C,-0.0071697945,-1.1109256552,0.0797245432	C,-1.0791436459,-0.0004016082,-0.0328229976	C,-1.3773107231,-0.2766303278,0.
N,-0.0071695689,0.0620961406,-0.0285036487	C,0.0252346166,0.7749128385,-0.0823392983	C,-0.0700641797,-0.0190364304,0.
C,-0.0071693246,1.3321578182,-0.1456876995	C,1.3009455813,0.2279373466,0.0461702155	C,1.1467217855,0.217637471,0.
C,-0.0071690925,2.5384493056,-0.2570051841	N,2.3713077658,-0.2125776159,0.1706593323	C,2.5271911143,0.5067783146,0.
H,-0.007168888,3.6020353937,-0.3551577615	H,-0.0751216632,1.8552041511,-0.1954697047	H,3.0155931264,0.1414399232,-0.9091509067
H,0.932075041,-2.9833471708,0.2524804798	H,-2.3766731062,-1.3267133461,0.8945582417	H,2.6323482398,1.6102503102,0.
H,-0.9464153502,-2.9833468921,0.2524795844	H,-2.8475787527,-0.7495292648,-0.8176114607	H,3.0155931264,0.1414399232,0.9091509067

Table S3 (cont.)-Coordinates of optimized structures of C₄H₃N⁺ isomers. Corresponding structures in Fig. S4.

i.		-	
	6+	7+	3+
	C,-2.0677637889,-0.8580118472,0.0151951662	N,-0.8913271445,-2.1717824021,0.	C,-2.2076946363,-0.6617966374,0.
	C,-1.0356921569,-0.0980995431,-0.0205933521	C,-0.4715730811,-1.0859375386,0.	C,-1.1619312826,-0.0156185683,0.
	C,0.0345416306,0.7445335425,-0.0547874566	C,0.0377500823,0.1845659703,0.	C,0.0198728132,0.7797442995,0.
	N,1.2811927269,0.2963210116,0.0516449841	C,-0.1852450106,1.5233459443,0.	C,1.2921965996,0.0949688377,0.
	C,2.4259878425,-0.035350025,0.1166761873	C,1.1992360499,1.0893599918,0.	N,2.3264476204,-0.4211715071,0.
	H,-0.1147232439,1.8173236254,-0.1697582942	H,1.8194359382,1.1974163744,0.905136776	H,-0.0348542503,1.4898760446,0.8545049579
	H,-2.3250288598,-1.4245469024,0.9127591094	H,-0.9048157726,2.3307102877,0.	H,-0.0348542503,1.4898760446,-0.8545049579
	H,-2.7231721505,-0.9700648617,-0.8511363441	H,1.8194359382,1.1974163744,-0.905136776	Н,-3.1165937236,-1.2321161031,0.

Table S3 (cont.)-Coordinates of optimized structures of C₄H₃N⁺ isomers. Corresponding structures in Fig. S4.

9+	8+	10+
C,-2.52104325,0.650070777,0.	C,0.626269897,0.2220900713,0.3493413964	C,2.0719965034,-0.8154180525,0.
N,-1.353740467,0.34630138,0.	C,-0.212666724,1.430208633,0.6836872414	C,1.1342873194,-0.0327933104,0.
C,-0.129322071,0.027643819,0.	N,-0.3635773249,-2.0739306827,-0.1603502378	C,0.0124233189,0.8847238873,0.
C,1.071596521,-0.288209149,0.	C,-0.4400765933,1.4216565803,-0.55678871	N,-1.2068736265,0.1067854173,0.
C,2.446056979,-0.625632211,0.	C,0.0875973612,-1.0222571518,0.0770155578	C,-2.226033098,-0.4415611684,0.
H,3.016483813,0.324753783,0.	H,-0.6763944167,1.4152696873,-1.6061915804	H,0.014699513,1.5138978408,0.8930021211
H,2.733101761,-1.162432104,0.908815029	H,-0.2483141756,2.0261500231,1.5878784735	H,0.014699513,1.5138978408,-0.8930021211
H,2.733101761,-1.162432104,-0.908815029	H,1.7051239763,0.3330478394,0.405407859	H,2.9047607095,-1.4884188678,0.

C₄H₂N⁻ family

A1			A2		A3		A4		A5
freq	IR int.								
cm⁻¹	km/mol								
106	2	158	2	39	66	136	16	159	3
275	6	348	117	53	43	252	1	340	31
399	4	392	406	139	2	319	7	344	16
508	20	412	51	453	68	373	3	435	115
542	36	513	39	461	15	552	5	499	119
552	112	574	34	480	0	873	10	594	235
625	3	629	8	521	5	928	1	611	172
798	11	719	37	526	1	961	15	764	36
1015	0	962	1	746	39	1230	0	958	4
1304	42	1155	14	1072	277	1305	51	1175	5
1461	16	1372	8	1420	290	1446	1	1374	1
2033	708	2017	958	2065	42	2079	103	1964	800
2197	929	2209	431	2208	2892	2319	54	2126	29
3104	26	3126	17	3454	9	2940	113	3153	20
3164	29	3325	6	3481	120	2945	17	3216	17

Table S4-Frequencies (unscaled) and intensities for C₄H₂N⁻ isomers. Corresponding structures in Fig. S5.

Table S5-Coordinates of optimized structures of C_4H_2N isomers. Corresponding structures in Fig. S5.

A1	A2	A3
N,-0.0068977314,-0.2616681822,2.6101339945	C,2.3773658786,-0.0127359615,0.2749613161	C,-2.5996138331,0.0145613308,-0.0000009642
C,-0.0002167255,0.0185106875,1.4723252921	C,1.2101076393,0.3502260169,0.0765201861	C,-1.3727801854,0.0003868613,-0.0000002288
C,0.0096369021,0.4632305935,0.1809523232	C,-0.0903903446,0.8008205568,-0.0098287112	C,-0.03090357,-0.0148225342,-0.0000003694
C,0.0037077113,0.0339079759,-1.0086724159	C,-1.2069114442,-0.0375039863,-0.0062061314	C,1.2145931147,-0.0004348601,-0.0000014092
C,-0.0007293486,-0.3200436117,-2.2992741236	N,-2.1643060242,-0.7074506914,-0.0085123667	N,2.488126241,-0.1144086761,0.0000075579
H,0.9222135342,-0.4938943759,-2.8395675283	H,-0.282634505,1.8642652494,-0.0912250912	H,2.9732640766,0.7778902958,-0.000064941
H,-0.9277143422,-0.460781087,-2.8422815419	H,3.2612788002,-0.3361831839,-0.233868323	H,-3.6578228438,0.0245455824,-0.0000006453

Table S5 (cont.)-Coordinates of optimized structures of C₄H₂N⁻ isomers. Corresponding structures in Fig. S5.

A4	A5
C,-2.3787125721,-0.4554361609,0.	C,2.2769093004,-0.408375522,-0.1580718613
C,-1.2526965719,0.0580794018,0.	C,1.1438945658,0.1031086617,0.0013205787
C,0.0120682392,0.7710174752,0.	C,-0.0784389205,0.7024367724,0.0202810204
N,1.2077507204,-0.069885727,0.	N,-1.2608100056,-0.0054913493,0.0081789028
C,2.1699137653,-0.7229775608,0.	C,-2.2900759863,-0.5673538467,0.0024665276
H,0.1232026823,1.4174638261,0.8783507376	H,-0.1922192836,1.7773435547,0.0423672311
H,0.1232026823,1.4174638261,-0.8783507376	H,3.0058233298,-0.7659272709,0.5517286008

C₄H₂N family

Table S6-Frequencies (unscaled) and intensities for C₄H₂N isomers. Corresponding structures in Fig. S7.

	R1		R2		3	R	4	R	5	R	6	R	7
freq	IR int.	Freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.	freq	IR int.
cm ⁻¹	km/mol	cm ⁻¹	km/mol	cm⁻¹	km/mol								
138	0	146	3	131	5	142	2	139	0	133	10	143	3
150	0	362	11	140	1	302	3	158	0	205	1	408	0
362	5	370	8	417	2	326	1	320	4	425	11	421	0
416	9	409	5	432	16	369	13	359	4	530	13	425	5
496	2	579	38	462	5	548	43	407	2	635	54	486	108
539	4	610	2	518	0	597	10	449	0	705	0	504	12
724	0	673	14	526	54	642	9	743	46	798	9	584	0
763	44	675	41	619	33	694	37	754	0	877	0	587	70
1020	0	957	7	757	1	981	12	1025	0	974	3	605	5
1308	0	1131	12	1013	296	1161	14	1328	0	1039	13	909	10
1467	2	1377	11	1496	65	1394	29	1472	1	1437	10	1335	8
2054	3	2053	34	2040	114	2040	83	2062	67	1694	14	1903	86
2226	26	2225	0	2049	112	2119	65	2125	20	2161	41	2126	16
3139	0	3163	2	3459	115	3182	0	3138	0	3247	17	3463	124
3227	1	3455	68	3473	33	3456	76	3225	0	3294	4	3469	22

Table S7-Coordinates of optimized structures of C_4H_2N isomers. Corresponding structures in Fig. S7.

R1	R2	R3
C,-1.6916343302,0.,-0.783492	C,2.2703808631,-0.4198303875,-0.0000533258	C,-0.45521748,3.1342179616,-0.3297375077
C,-0.3438437433,0.,-0.783492	C,1.1790722178,0.1101426806,0.0000050108	N,-0.0818700983,1.9494699084,-0.190362967
C,0.8876075082,0.,-0.783492	C,-0.0483597405,0.7366152666,0.0000726307	C,1.1332949399,-1.5900105097,-0.4122309697
C,2.2381358727,0.,-0.783492	C,-1.2569237752,0.0321816331,0.000170982	C,0.7362453157,-0.4369637098,-0.3323840182
N,3.4006174697,0.,-0.783492	N,-2.2734407359,-0.5253365654,0.000271709	C,0.3062335641,0.8067865334,-0.2352347028
H2.2454403886.0.92887460590.783492	H0.0993854403.1.8182995467.0.0000473512	H.1.47847252752.5908806650.4849210812
H,-2.2454403886,-0.9288746059,-0.783492	H,3.2221386109,-0.8909601741,-0.0001033579	H,-0.775607769,3.6792614811,0.5575292464

Table S7 (cont.)-Coordinates of optimized structures of C₄H₂N isomers. Corresponding structures in Fig. S7.

R4	R5	R6
C,-2.2335657935,-0.3974246764,0.0009973545	C,-2.4272454509,0.000375239,-0.0000196046	C,-1.1257883068,-0.0008291348,-0.0030446491
C,-1.129818047,0.1051038383,0.0004788161	C,-1.07422322,0.0002048034,0.000024626	C,0.2170704444,0.000134543,0.2422242511
C,0.1067697937,0.7139583407,-0.0001410462	C,0.1525910453,0.0000498273,-0.0000104768	N,-2.2896395223,-0.0016517995,-0.1033377208
N,1.2572203464,0.002996258,0.0003957914	N,1.4454399233,-0.0001138018,0.0000033442	C,1.4810985133,-0.6545076631,0.0152120404
C,2.2773970596,-0.5838956044,0.0007255487	C,2.6287614653,-0.0002637781,-0.0000092925	C,1.4802426414,0.6563348071,0.014994714
H,0.201042522,1.7908872308,-0.0010768842	H,-2.9822786485,-0.9276330729,0.0000044735	H,2.0186127814,1.5813138391,-0.0847818418
H,-3.1965708812,-0.844863387,0.0014534196	H,-2.9820471146,0.9285217274,-0.0000663123	H,2.0207064486,-1.5788006246,-0.0842327938

Table S7 (cont.)-Coordinates of optimized structures of C₄H₂N isomers. Corresponding structures in Fig. S7.

R7

C,-2.2961183668,-0.3127614603,0.0002699518 C,-1.1539437781,0.1107402241,0.0001480403 N,-0.0000328769,0.6919345803,-0.0006107242 C,1.1539983971,0.1109664794,0.0000511767 C,2.296249468,-0.312321354,0.0002130003 H,3.2785859883,-0.7118790503,0.0012672278 H,-3.2783519618,-0.7125704192,0.0019473274

C₄H₄N⁺ family

H1⁺ H2⁺ H3+ H4⁺ H5+ H6⁺ H7⁺ H8⁺ H9⁺ freq IR int. IR int. freq IR int. IR int. IR int. IR int. IR int. IR int. frea IR int. Freq freq freq freq frea freq km/mol cm-1 km/mol cm-1 km/mol km/mol cm-1 km/mol cm⁻¹ km/mol km/mol cm-1 km/mol cm⁻¹ km/mol cm⁻¹ cm⁻¹ cm⁻¹

Table S8-Frequencies (unscaled) and intensities for C₄H₄N⁺ isomers. Corresponding structures in Fig. S6.

Table S9-Coordinates of optimized structures of C₄H₄N⁺ isomers. Corresponding structures in Fig. S6.

H1+	H2+	H3+
N,0,0.0000024225,-0.0000054457,-2.4961415453	C,-2.2935494411,-0.5324938909,0.	C,0.,0.,-2.4944240195
C,0,-0.0000049514,0.0000097245,-1.346520224	C,-1.1808283749,0.1082468141,0.	N,0.,0.,-1.0673536639
C,0,-0.000009792,0.0000208817,-0.0139084814	C,-0.052161253,0.8024095246,0.	C,0.,0.,2.6311079773
C,0,-0.0000104925,0.0000246226,1.2002722283	C,1.1718581976,0.1315755632,0.	C,0.,0.,1.4276768426
C,0,0.0000060447,-0.0000010292,2.6301686434	N,2.1877155275,-0.3966955219,0.	C,0.,0.,0.0795460913
H,0,0.513531866,-0.8894844136,3.0045238889	H,3.0773329502,-0.8653954796,0.	H,1.0331361243,0.,-2.8384533615
H,0,0.5135314714,0.889467262,3.0045605473	H,-0.0177831763,1.8879717608,0.	H,0.,0.,3.7001624243
H,0,-1.0270581266,-0.000008234,3.0045624078	H,-2.7789975992,-0.8098883704,0.9308069895	H,-0.5165680621,-0.8947221292,-2.8384533615
H,0,0.0000115578,-0.0000233682,-3.5012963622	H,-2.7789975992,-0.8098883704,-0.9308069895	H,-0.5165680622,0.8947221292,-2.8384533615

Table S9 (cont.)-Coordinates of optimized structures of C₄H₄N⁺ isomers. Corresponding structures in Fig. S6.

H4+	H5+	H6+
C,0.,0.,-0.0565832569	C,0.,0.,-2.5186415868	C,-2.1659016212,-0.6240485773,0.
C,0.,0.,1.1887379696	C,0.,0.,-1.0836204566	N,-1.2022944856,-0.0162613169,0.
N,0.,0.,2.4591664096	N,0.,0.,0.0670392317	C,2.3147060237,-0.293618076,0.
C,0.,0.,-2.633834035	C,0.,0.,1.3684437472	C,1.1264346785,0.2026942656,0.
C,0.,0.,-1.3423706198	C,0.,0.,2.5673416864	C,-0.0609120196,0.7671196574,0.
H,0.,0.9324780927,-3.1911069799	H,0.,0.,3.634508317	H,-0.2520373131,1.8323960072,0.
H,-0.8666507585,0.,2.9900967997	H,-0.5155541151,0.8929659215,-2.8808544246	H,2.8306177349,-0.5101883257,-0.9301022736
H,0.,-0.9324780927,-3.1911069799	H,-0.5155541151,-0.8929659215,-2.8808544246	H,-3.070809589,-1.2021231329,0.
H,0.8666507585,0.,2.9900967997	H,1.0311082304,0.,-2.8808544246	H,2.8306177349,-0.5101883257,0.9301022736

Table S9 (cont.)-Coordinates of optimized structures of C₄H₄N⁺ isomers. Corresponding structures in Fig. S6.

H7+	H8+	Н9+
N,-0.9317107567,-0.0000001353,-0.2423766597	C,2.1744334773,-0.529974691,0.	N,2.1062366462,-0.3499397982,0.
C,1.545993125,0.6654078008,0.0403186714	N,1.0951983368,0.0827734539,0.	C,1.1241121898,0.2236261556,0.
C,1.5459931959,-0.6654078076,0.0403186714	C,-2.3675732763,-0.3461120566,0.	C,-2.1579882099,-0.7983097815,0.
C,0.3191677175,-0.0000000687,-0.0245588935	C,-1.2546001539,0.1065387634,0.	C,-1.2505091942,-0.0208371334,0.
C,-2.1195405584,-0.0000001986,0.1621651018	C,0.0035828382,0.7198483072,0.	C,-0.1492073997,0.9316288523,0.
H,-2.361050909,-0.0000002114,1.2231188677	H,2.6488896398,-0.7994534,0.9427057314	H,-0.1545303505,1.5836123156,0.8830063216
H,-2.9249692343,-0.0000002415,-0.5654237357	H,0.0714074038,1.8082009976,0.	H,-2.976740645,-1.4798292609,0.
H,2.0870067458,-1.5978784555,0.0638364859	H,-3.3525704609,-0.7569363553,0.	H,2.9724715782,-0.8670270551,0.
H,2.0870065756,1.5978785063,0.0638364859	H,2.6488896398,-0.7994534,-0.9427057314	H,-0.1545303505,1.5836123156,-0.8830063216

C₄H₄N family

Table S10-Frequencies (unscaled) and intensities for C₄H₄N isomers. Corresponding structures Fig. S8.

I	H1	I	H2		Н3		H4	H	15	H	16
freq	IR int.										
cm⁻¹	km/mol										
161	1	159	4	496	0	203	4	163	1	153	3
181	6	238	2	543	20	291	1	169	4	238	1
405	0	407	1	663	5	397	0	365	1	342	0
469	4	478	0	715	68	533	10	388	0	416	1
573	9	550	19	831	0	541	0	537	2	548	20
574	0	661	0	850	0	600	1	564	11	657	4
765	4	733	17	882	11	650	9	745	3	717	11
883	46	890	34	926	0	787	3	861	47	869	36
927	0	940	1	936	0	803	0	933	2	964	2
1009	24	1001	8	1044	2	832	66	997	26	987	9
1087	4	1040	1	1080	6	987	1	1127	8	1042	5
1206	1	1156	2	1090	40	1043	0	1201	1	1187	2
1289	3	1257	2	1203	3	1314	2	1291	3	1250	1
1332	1	1421	1	1298	0	1365	1	1349	1	1430	6
1476	11	1443	12	1360	45	1485	18	1477	15	1444	14
1537	2	1543	3	1433	24	1525	5	1535	2	1542	2
2227	5	2244	5	1559	2	2341	8	2102	99	2115	101
3147	3	3150	1	3197	15	3158	0	3148	2	3155	2
3158	1	3160	5	3201	1	3163	3	3162	0	3165	3
3170	1	3191	0	3228	5	3263	0	3180	4	3201	2
3243	4	3246	2	3247	1	3264	1	3244	4	3250	2

Table S11-Coordinates of optimized structures of C₄H₄N isomers. Corresponding structures Fig. S8.

H1	H2	H3
C,-2.2969136881,-0.3151322625,0.	C,-1.5529202545,-0.9771198619,0.	N,0.,0.,-1.2121610445
C,-0.9472999313,-0.5226781209,0.	C,-1.2808555168,0.3624494489,0.	C,1.0626587339,0.,-0.3934548236
N,2.5240141373,0.1035874444,0.	N,2.1636464449,-0.432502502,0.	C,-1.0626587339,0.,-0.3934548236
C,1.3782429409,0.2807828772,0.	C,1.1829878633,0.1835528079,0.	C,0.6786467456,0.,1.0109682453
C,-0.0031003595,0.5104837194,0.	C,-0.0027083762,0.9356595818,0.	C,-0.6786467456,0.,1.0109682453
H,-0.3273205966,1.5436086599,0.	H,0.1078747838,2.0109288374,0.	H,-1.348559797,0.,1.8547937097
H,-2.7122927407,0.6838761508,0.	Н,-0.7613972139,-1.7142105048,0.	H,1.348559797,0.,1.8547937097
H,-0.5739032845,-1.5398869729,0.	H,-2.1113564132,1.0580643471,0.	H,2.0696078206,0.,-0.7864709322
H,-2.9900854774,-1.1427554954,0.	Н,-2.5713713173,-1.3353161543,0.	H,-2.0696078206,0.,-0.7864709322

Table S11 (cont.)-Coordinates of optimized structures of C₄H₄N isomers. Corresponding structures Fig. S8.

H4	H5	H6
C,0.0000027833,0.4438592832,0.	C,-2.3662014194,-0.0023698663,0.	C,-1.6532285612,-0.8775682177,0.
C,0.0000071383,1.0908530445,1.2265986758	C,-1.0566254042,-0.3901848458,0.	C,-1.2806379773,0.437457377,0.
C,0.0000071383,1.0908530445,-1.2265986758	C,2.4312726208,-0.2471734512,0.	C,2.0468402608,-0.6142936138,0.
C,-0.0000096774,-0.9985115213,0.	N,1.3034027281,0.0863357017,0.	N,1.1106048973,0.0957992736,0.
N,-0.0000189581,-2.1496198726,0.	C,0.0149910967,0.503712092,0.	C,0.0306521654,0.9172921444,0.
H,0.0000018195,0.5396051101,-2.1534232055	H,-0.1346681728,1.5751057558,0.	H,0.247542592,1.9752296429,0.
H,0.0000144666,2.1701799008,-1.2686406299	H,-0.8150409347,-1.4464960851,0.	H,-2.0489496727,1.2007673464,0.
H,0.0000018195,0.5396051101,2.1534232055	H,-3.1632933895,-0.729943135,0.	H,-2.6960803465,-1.1558364848,0.
H,0.0000144666,2.1701799008,1.2686406299	H,-2.645409023,1.042817367,0.	Н,-0.9209663438,-1.6726222779,0.

Singlet C₄H₃N family (¹⁴N/¹⁵N comparison)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2966.8	3069.4	3329.1	3342.0	3332.2	3061.8	3141.6	3176.3	2963.3	3328.6	3478.0	3337.6	3166.1	3324.2	3328.0	3150.7	3329.5	3329.9
2966.8	3015.4	2934.3	3080.3	3329.0	3034.5	3008.5	3129.3	2963.3	2944.0	3394.6	3102.9	3121.6	3050.7	3098.7	2993.7	3066.8	3038.7
2908.9	2998.5	2907.6	3007.9	3022.0	2992.4	2938.6	2972.5	2907.3	2916.9	3331.7	3024.3	2995.7	2965.7	3001.6	2926.9	3011.7	2978.6
2294.7	2241.0	2271.2	2161.6	2115.8	2109.8	2232.6	2240.6	2284.8	2150.4	2242.7	2130.3	2115.3	2122.5	2060.5	2096.2	2123.4	2103.1
2170.5	1959.1	2150.3	1933.4	2030.3	1966.1	1742.4	1671.5	2059.7	2138.7	2078.9	2038.5	1655.3	1707.1	1953.2	1757.1	1682.8	1916.2
1410.2	1405.0	1392.9	1448.3	1343.8	1414.2	1461.5	1314.4	1414.9	1415.2	1572.3	1396.3	1324.6	1449.8	1449.9	1463.1	1311.5	1379.8
1410.2	1295.8	1287.8	1312.5	1109.2	1314.2	1114.7	1091.8	1414.9	1321.1	1258.9	1236.0	1112.1	1210.5	1299.1	1139.7	1197.1	1178.1
1357.3	1091.6	1196.8	949.4	951.3	1116.4	1056.0	1007.3	1359.9	1228.7	1129.6	942.1	1013.9	1067.2	1091.5	1060.4	1009.7	956.6
1131.3	959.4	952.2	940.8	924.9	969.2	1036.5	970.0	1165.1	954.6	691.2	836.6	993.2	1001.1	806.8	1040.2	962.6	865.2
1007.5	912.4	901.3	757.2	818.2	929.4	972.4	924.4	1009.8	945.2	647.5	703.1	907.0	953.6	724.5	974.7	904.2	812.3
1007.5	862.3	863.5	732.4	674.8	880.4	971.4	869.3	1009.8	876.1	550.7	639.9	877.9	838.1	706.5	968.6	765.3	683.0
645.9	839.8	679.4	694.9	610.9	838.1	910.2	827.4	667.3	691.1	511.6	591.6	846.8	688.2	628.3	906.0	676.0	625.8
524.5	622.9	663.8	560.7	607.4	614.0	750.2	790.2	450.6	657.3	475.3	563.1	827.9	642.2	513.4	731.4	670.8	590.2
524.5	588.9	553.5	471.0	568.1	582.2	620.3	620.4	450.6	531.4	459.0	540.7	632.8	630.3	477.5	632.9	620.0	561.1
348.5	365.7	349.3	409.5	423.8	317.4	521.0	551.2	304.9	305.6	403.9	421.7	480.3	504.0	415.8	458.3	529.4	422.8
348.5	361.6	339.9	366.4	369.6	291.6	484.0	536.5	304.9	274.2	323.0	369.0	479.5	499.3	297.2	398.7	500.9	333.0
141.4	300.9	303.8	136.6	334.9	260.6	202.0	220.3	148.1	242.7	149.1	282.9	196.5	206.8	233.6	194.5	221.4	325.7
141.4	138.5	135.3	122.8	135.7	135.8	194.5	210.3	148.1	129.7	138.2	130.4	181.0	189.8	129.3	182.0	197.4	141.7

Table S12-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁴N isomers. Numbering according Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
3108.0	3098.8	3056.8	3434.5	2978.0	3073.9	3001.3	2971.2	3243.0	3107.7	2943.4	3163.6	3060.7	3099.6	3050.8	3107.7	3318.5	3200.1
3012.6	3016.8	3043.4	3340.3	2978.0	3001.3	2995.5	2956.7	3167.2	3027.0	2916.9	3096.6	2961.9	3048.2	2935.3	3016.7	3108.5	3161.7
2963.8	3006.7	2978.7	3337.8	2912.5	2955.4	2922.1	2926.2	3121.7	3018.8	2887.7	3073.2	2899.2	2939.8	2900.6	2971.5	2916.8	3096.8
2054.8	2055.1	2036.2	2164.5	2289.8	2134.2	2243.0	2266.1	2062.7	1671.8	2273.7	1449.3	2210.7	1706.2	2210.5	1918.2	1690.3	1561.1
1535.6	1503.3	1616.5	2147.7	1962.9	1860.9	1649.0	1684.8	1628.9	1596.5	1723.5	1336.7	1477.2	1609.4	1473.4	1561.1	1604.9	1374.4
1387.5	1388.5	1465.5	1420.1	1426.4	1457.7	1418.0	1404.6	1370.9	1384.1	1403.1	1264.7	1287.0	1448.5	1379.9	1378.1	1352.6	1298.9
1274.1	1281.8	1341.3	1160.7	1426.4	1337.6	1415.6	1279.5	1109.9	1304.8	1294.7	1178.7	1220.4	1230.6	1151.5	1270.1	1245.3	1184.1
1223.8	1264.1	1070.9	937.0	1398.2	971.9	1341.4	1200.6	991.4	1261.1	1197.4	1151.0	1101.9	1151.6	1053.8	1175.5	1169.4	1122.3
1042.8	1023.4	997.3	693.1	1146.3	860.3	1045.1	1021.0	939.0	1080.5	991.8	1031.4	1004.4	1073.2	970.0	1061.3	1088.9	1106.9
1028.6	969.4	869.7	691.7	1095.8	793.0	997.8	942.7	816.8	998.9	910.5	1001.5	925.7	984.4	891.7	1028.0	1057.2	1005.1
962.7	937.7	806.2	594.3	1095.8	765.7	993.3	879.0	800.2	979.9	897.1	930.1	834.7	934.0	853.3	968.7	919.2	920.7
837.4	829.9	774.4	492.3	686.1	753.7	717.6	803.8	755.8	977.5	805.4	841.8	774.7	838.6	759.2	875.8	890.2	783.2
645.2	664.5	624.1	482.1	509.7	474.8	528.2	631.9	690.0	707.8	532.0	804.3	653.0	747.9	631.1	634.0	772.0	697.0
564.6	528.1	608.9	413.3	509.7	432.8	509.6	495.3	585.8	707.6	528.4	709.3	561.4	706.6	504.5	542.2	746.8	667.3
417.6	421.6	508.2	397.5	164.4	398.1	277.3	357.4	553.4	500.0	348.7	602.4	489.6	521.9	481.3	405.0	551.7	639.1
322.2	320.6	352.7	335.7	164.4	314.5	204.1	209.8	306.1	359.0	247.4	554.7	308.0	365.1	307.1	266.3	296.1	632.3
171.0	218.0	210.3	218.2	41.6	155.0	189.5	155.9	231.0	200.8	130.0	515.8	184.8	190.9	176.5	186.9	213.5	629.0
55.7	137.7	189.2	139.2	41.6	121.0	142.9	98.3	189.3	97.9	118.5	418.4	103.9	179.7	121.1	83.3	66.7	99.8

Table S12 (cont.)-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
3099.7	3322.4	2965.7	3322.3	3377.3	3386.2	3039.4	3317.9	3040.0	3369.8	3466.1	2983.0	3436.4	2991.4	3366.7	3474.5	3008.9	3556.8
3037.0	3129.7	2965.7	3055.6	3109.6	3111.7	2998.4	3000.1	2967.2	3329.8	2997.6	2974.3	3139.6	2982.0	3046.7	3126.6	2995.7	3441.0
3013.4	2971.7	2903.8	2844.5	3024.4	3022.5	2969.3	2951.8	2929.8	3024.8	2931.7	2935.2	3134.7	2911.9	2981.2	3075.6	2944.5	3058.0
1908.7	1735.9	2270.2	2031.3	2035.4	2030.3	2245.7	1950.3	1969.4	2119.3	2066.5	2132.1	1737.7	2105.4	2017.0	1651.5	1742.7	1636.6
1531.1	1375.6	1970.6	1702.5	1613.1	1619.9	1330.4	1588.9	1722.2	1536.0	1523.4	1675.9	1426.9	1647.7	1508.0	1397.3	1370.3	1554.8
1379.7	1253.0	1402.8	1332.9	1282.7	1282.0	1289.6	1367.7	1467.6	1307.8	1392.1	1426.8	1341.1	1409.6	1406.9	1347.6	1309.5	1274.9
1273.2	1163.2	1402.8	1125.7	1111.8	1117.3	1162.5	1306.6	1362.5	1156.3	1023.7	1313.9	1325.7	1408.2	1280.2	1256.8	1183.5	1214.8
1209.6	1143.8	1352.7	1021.0	1016.4	1009.0	1037.0	1201.9	1147.9	986.7	979.4	1233.2	1190.8	1338.6	1012.0	1157.9	1152.5	1059.9
1021.7	1020.9	1126.2	960.3	926.2	917.6	991.2	1100.3	1130.5	951.6	965.2	1045.0	1180.5	1066.2	995.9	1116.1	1073.2	1019.7
978.2	950.0	996.3	832.8	872.8	859.3	902.7	1076.2	1045.0	894.7	902.3	945.6	1039.9	993.3	864.5	1021.7	1066.4	938.9
955.7	908.4	996.3	800.9	808.4	804.2	863.7	985.3	982.3	680.0	825.5	903.2	964.4	977.1	801.4	993.0	889.0	773.8
871.9	837.1	684.2	649.4	684.7	677.3	718.6	925.3	902.8	674.2	693.5	819.3	883.5	742.6	658.5	859.3	866.0	674.6
673.6	776.2	476.1	576.4	584.5	582.8	691.7	696.7	711.0	604.8	618.0	648.1	709.0	479.8	624.8	811.1	789.4	656.0
493.2	693.0	476.1	516.2	579.5	562.1	603.9	529.3	487.7	549.0	568.0	427.0	665.8	435.6	501.4	732.3	691.0	549.4
369.4	651.5	229.7	426.0	456.7	464.5	449.1	404.3	331.7	522.2	500.8	262.3	603.7	262.8	404.2	601.7	569.7	508.5
310.6	494.3	229.7	236.8	288.8	266.6	436.4	251.4	228.1	428.6	348.6	192.8	529.9	210.9	289.4	542.5	566.3	376.3
203.9	409.0	116.9	143.1	202.2	194.0	192.0	150.2	180.0	220.5	168.9	154.5	454.0	196.4	205.6	437.5	544.8	284.7
146.1	273.6	116.9	133.3	129.5	134.4	177.6	112.6	89.3	194.8	158.4	102.1	445.1	153.6	190.8	256.5	346.8	279.7

Table S12 (cont.)-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2966.8	3069.4	3329.1	3334.4	3332.0	3061.8	3141.6	3176.3	2963.3	3328.6	3467.6	3337.6	3166.1	3324.2	3328.0	3150.7	3329.5	3329.9
2966.8	3015.4	2934.3	3080.3	3321.6	3034.5	3008.5	3129.3	2963.3	2944.0	3390.4	3102.9	3121.6	3050.7	3098.7	2993.7	3066.7	3038.7
2908.9	2998.5	2907.6	3007.9	3022.0	2992.4	2938.6	2972.5	2907.3	2916.8	3331.7	3024.3	2995.7	2965.7	3001.6	2926.9	3011.7	2978.4
2286.8	2212.9	2242.1	2158.9	2115.6	2071.4	2206.1	2211.7	2279.7	2149.4	2241.8	2128.4	2077.9	2122.4	2060.4	2057.7	2123.4	2102.6
2151.5	1959.1	2150.3	1925.3	2017.2	1966.1	1740.3	1671.4	2024.9	2101.3	2078.5	2023.7	1655.2	1689.0	1915.3	1756.9	1658.0	1876.4
1410.2	1404.7	1392.9	1442.2	1337.8	1414.1	1461.4	1314.4	1414.9	1415.2	1567.2	1389.7	1324.0	1449.4	1449.3	1463.1	1310.9	1379.3
1410.2	1295.4	1287.6	1308.5	1103.5	1313.7	1114.2	1091.1	1414.9	1320.7	1248.6	1220.1	1112.0	1205.3	1295.5	1139.3	1196.8	1177.0
1357.2	1090.2	1196.8	949.4	945.7	1115.6	1056.0	1007.3	1359.9	1227.3	1124.5	941.9	1013.9	1066.7	1088.2	1060.4	1007.1	955.5
1126.0	959.4	949.7	935.1	923.0	969.2	1036.5	970.0	1163.6	953.3	682.5	827.2	993.1	1000.6	805.2	1040.1	961.8	865.1
1007.5	907.5	901.2	757.2	816.0	926.4	971.4	921.9	1009.8	944.0	647.5	703.1	906.4	951.5	724.5	974.0	903.4	810.1
1007.5	862.3	859.7	724.4	674.8	880.4	971.1	866.6	1009.8	873.8	550.7	639.7	875.0	830.3	706.3	968.5	765.0	683.0
639.5	839.8	679.4	692.8	610.5	838.1	907.3	827.4	663.1	691.1	511.5	586.4	846.7	688.2	627.6	904.4	675.3	624.7
523.2	622.2	663.8	559.4	604.9	611.2	750.1	790.1	446.4	657.3	473.5	560.5	827.6	641.7	506.1	730.8	665.1	583.6
523.2	585.8	551.0	471.0	568.1	577.2	615.7	619.0	446.4	526.0	456.4	540.2	631.4	622.1	476.4	629.2	620.0	561.0
347.7	364.3	347.0	408.2	422.6	316.0	519.2	550.1	301.5	305.4	403.6	421.5	474.0	503.9	412.8	451.5	529.3	415.1
347.7	360.3	338.5	366.1	368.7	287.0	482.5	534.4	301.5	270.2	322.8	368.7	472.6	497.4	293.9	393.8	494.3	332.7
140.1	299.9	303.6	135.6	334.5	257.1	200.5	218.4	147.9	238.1	148.2	282.7	194.8	206.4	231.6	192.7	219.8	321.8
140.1	136.9	133.6	122.1	134.4	135.5	192.6	207.7	147.9	129.4	137.5	129.1	179.2	189.0	129.1	180.6	196.5	141.5

Table S13-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
3108.0	3098.8	3056.7	3427.0	2978.0	3073.9	3001.3	2971.2	3235.8	3107.7	2943.4	3163.6	3060.7	3099.6	3050.8	3107.7	3311.1	3200.1
3012.6	3016.8	3043.4	3340.2	2978.0	3001.2	2995.5	2956.7	3167.2	3027.0	2916.9	3096.6	2961.9	3048.2	2935.3	3016.7	3108.5	3161.7
2963.8	3006.7	2978.7	3337.8	2912.4	2955.3	2922.1	2926.2	3121.7	3018.8	2887.7	3073.2	2899.2	2939.8	2900.6	2971.5	2916.8	3096.8
2028.7	2029.1	2035.7	2163.8	2265.8	2124.2	2215.3	2237.0	2055.3	1660.7	2244.6	1440.4	2183.0	1688.1	2182.8	1884.1	1690.1	1559.5
1535.6	1503.3	1598.9	2145.0	1953.6	1831.8	1648.3	1684.8	1626.6	1595.3	1723.5	1335.0	1476.8	1600.2	1473.1	1560.9	1588.0	1373.0
1387.3	1388.1	1460.8	1409.1	1426.2	1456.1	1418.0	1404.6	1360.8	1383.9	1403.1	1262.5	1286.7	1442.8	1379.4	1378.0	1342.8	1295.3
1273.8	1280.1	1339.7	1141.8	1426.2	1337.5	1415.5	1279.4	1103.8	1296.4	1294.5	1177.6	1220.4	1230.2	1150.9	1270.1	1245.0	1176.1
1221.6	1263.9	1068.8	920.8	1398.2	971.9	1341.3	1200.6	991.4	1258.3	1197.3	1143.0	1101.6	1148.6	1053.5	1174.9	1168.1	1115.5
1041.4	1022.3	997.3	693.1	1134.0	858.5	1041.1	1020.9	937.8	1074.3	989.3	1027.7	1002.3	1070.9	969.4	1059.6	1087.6	1100.4
1028.6	969.3	869.7	691.7	1094.0	793.0	997.8	939.4	816.6	998.9	910.4	1000.4	922.3	983.8	886.4	1028.0	1055.0	1003.7
962.7	937.4	806.0	593.4	1094.0	765.7	993.3	877.0	800.2	977.5	896.7	923.0	833.8	933.2	853.2	968.7	919.1	915.1
834.0	825.0	772.8	491.0	685.6	749.9	712.5	802.2	753.3	974.7	800.8	838.7	774.7	838.2	758.7	874.0	890.1	783.2
644.6	663.4	618.3	482.1	508.3	467.3	527.0	630.9	683.2	707.3	530.2	801.6	652.7	740.3	629.1	633.6	771.9	696.7
562.2	526.5	607.5	411.2	508.3	432.8	508.4	493.7	585.8	703.9	528.3	708.2	558.7	701.8	503.3	533.3	746.8	666.5
416.1	420.5	502.4	397.5	163.5	389.9	276.0	355.0	552.5	495.1	346.3	599.9	488.5	519.7	480.9	402.0	546.9	638.2
320.3	320.4	352.6	335.7	163.5	313.0	203.6	207.9	305.1	358.8	245.7	553.1	305.9	363.1	305.0	260.6	295.8	623.6
169.2	216.4	210.1	217.0	40.9	154.7	187.8	155.5	230.1	200.3	129.9	512.2	182.6	189.4	174.3	186.3	211.4	622.0
55.4	136.0	188.2	138.5	40.9	121.0	142.2	97.8	187.9	96.8	117.4	415.6	103.5	178.4	120.8	83.3	66.2	99.5

Table S13 (cont.)-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
3099.7	3315.1	2965.7	3314.7	3369.3	3378.2	3039.4	3310.5	3040.0	3361.5	3457.4	2983.0	3428.2	2991.4	3358.4	3466.3	3008.9	3545.6
3037.0	3129.7	2965.7	3055.6	3109.6	3111.7	2998.4	3000.1	2967.2	3329.8	2997.6	2974.3	3139.6	2982.0	3046.7	3126.6	2995.7	3436.7
3013.4	2971.6	2903.8	2844.5	3024.4	3022.5	2969.3	2951.8	2929.8	3024.8	2931.7	2935.2	3134.7	2911.9	2981.2	3075.6	2944.5	3058.0
1874.5	1720.1	2234.5	2018.4	2020.7	2015.5	2217.6	1950.3	1969.2	2119.3	2052.8	2093.8	1737.6	2066.7	2016.4	1651.4	1721.9	1625.4
1531.1	1375.5	1970.6	1702.4	1612.9	1619.7	1330.2	1573.4	1692.3	1515.5	1516.2	1675.9	1415.0	1647.6	1500.6	1395.2	1370.2	1553.7
1379.7	1251.6	1402.8	1326.6	1277.7	1277.2	1288.8	1358.0	1464.3	1306.8	1391.7	1426.8	1334.1	1409.6	1399.2	1336.5	1308.4	1271.6
1273.2	1159.1	1402.8	1120.3	1105.4	1110.8	1162.3	1304.4	1360.9	1142.8	1022.8	1313.5	1323.0	1408.2	1270.9	1254.5	1183.5	1214.8
1208.5	1140.5	1352.7	1019.1	1016.1	1008.8	1035.2	1201.3	1146.6	986.5	978.4	1231.8	1186.4	1338.6	1004.4	1146.3	1151.7	1056.7
1021.0	1020.8	1114.2	955.5	923.4	915.1	991.1	1100.1	1127.4	951.0	965.0	1044.2	1180.5	1064.9	995.9	1113.8	1067.3	1016.2
978.2	949.1	996.3	830.7	868.3	854.9	900.1	1073.1	1044.5	892.5	899.0	944.0	1032.8	993.2	864.5	1019.7	1065.6	934.1
955.2	906.2	996.3	799.2	807.2	802.8	862.6	985.1	978.8	679.9	825.2	901.5	956.6	976.7	796.6	987.6	888.2	768.9
869.6	833.5	684.1	649.1	684.4	676.7	718.3	925.3	901.7	671.4	689.2	818.4	874.2	739.4	655.0	850.2	864.1	674.4
671.0	773.1	466.6	574.5	584.1	581.0	689.9	696.3	704.2	604.7	614.2	647.0	708.9	476.2	624.7	811.0	787.0	654.9
487.7	691.0	466.6	515.7	577.2	561.2	603.1	524.4	485.9	544.3	566.5	420.0	665.8	427.6	499.8	732.0	690.9	548.9
366.7	651.0	229.6	424.8	455.4	463.6	447.5	401.5	327.7	521.1	500.2	257.6	603.7	260.9	402.3	601.3	565.6	508.4
305.1	493.1	229.6	235.3	288.2	266.2	434.9	251.2	226.8	426.5	347.3	191.5	521.9	209.2	288.2	537.7	558.6	374.8
202.5	406.1	116.2	142.7	200.8	192.6	190.5	149.7	179.2	219.1	167.7	154.1	454.0	195.7	205.6	436.2	541.6	283.5
145.8	271.8	116.2	132.6	128.8	133.6	175.8	111.5	89.0	194.5	157.7	102.1	444.8	152.9	190.1	255.1	345.3	277.4

Table S13 (cont.)-Frequencies in cm⁻¹ (scaled by 0.96) for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	0.0	0.0	7.6	0.2	0.0	0.0	0.0	0.0	0.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	7.4	0.0	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	0.0	0.0	0.1	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
7.9	28.1	29.1	2.7	0.2	38.4	26.5	28.9	5.1	1.0	0.9	1.9	37.4	0.1	0.1	38.5	0.0	0.5
19.0	0.0	0.0	8.1	13.1	0.0	2.1	0.1	34.8	37.4	0.4	14.8	0.1	18.1	37.9	0.2	24.8	39.8
0.0	0.3	0.0	6.1	6.0	0.1	0.1	0.0	0.0	0.0	5.1	6.6	0.6	0.4	0.6	0.0	0.6	0.5
0.0	0.4	0.2	4.0	5.7	0.5	0.5	0.7	0.0	0.4	10.3	15.9	0.1	5.2	3.6	0.4	0.3	1.1
0.1	1.4	0.0	0.0	5.5	0.8	0.0	0.0	0.0	1.4	5.1	0.2	0.0	0.5	3.3	0.0	2.6	1.0
5.3	0.0	2.5	5.7	1.9	0.0	0.0	0.0	1.5	1.4	8.7	9.5	0.0	0.5	1.7	0.1	0.8	0.2
0.0	4.9	0.1	0.0	2.1	2.9	0.9	2.5	0.0	1.2	0.0	0.0	0.6	2.1	0.0	0.7	0.8	2.2
0.0	0.0	3.8	8.0	0.0	0.0	0.3	2.7	0.0	2.3	0.0	0.2	3.0	7.8	0.2	0.0	0.3	0.0
6.3	0.0	0.0	2.0	0.5	0.0	2.9	0.0	4.2	0.0	0.0	5.2	0.0	0.0	0.6	1.6	0.7	1.1
1.4	0.6	0.0	1.3	2.4	2.8	0.1	0.1	4.2	0.0	1.7	2.5	0.3	0.5	7.3	0.6	5.7	6.7
1.4	3.1	2.6	0.0	0.0	5.0	4.7	1.4	4.2	5.4	2.6	0.5	1.4	8.2	1.1	3.7	0.0	0.0
0.8	1.4	2.3	1.3	1.2	1.4	1.8	1.1	3.4	0.2	0.3	0.2	6.4	0.2	3.0	6.8	0.1	7.7
0.8	1.3	1.4	0.2	0.9	4.5	1.5	2.1	3.4	4.0	0.3	0.3	6.9	1.9	3.3	5.0	6.6	0.4
1.2	1.0	0.2	1.0	0.4	3.5	1.5	1.9	0.3	4.6	0.8	0.1	1.8	0.5	1.9	1.8	1.6	3.9
1.2	1.6	1.6	0.7	1.4	0.4	1.9	2.6	0.3	0.3	0.7	1.3	1.9	0.8	0.2	1.4	0.9	0.3

Table S14-¹⁴N-¹⁵N Frequency difference in cm⁻¹ for singlet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0.0	0.0	0.1	7.5	0.0	0.0	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.4	0.0
0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26.1	26.0	0.5	0.7	24.0	10.0	27.7	29.1	7.4	11.1	29.1	8.9	27.7	18.1	27.7	34.1	0.2	1.6
0.0	0.0	17.6	2.7	9.3	29.1	0.7	0.0	2.3	1.2	0.0	1.7	0.4	9.2	0.3	0.2	16.9	1.4
0.2	0.4	4.7	11.0	0.2	1.6	0.0	0.0	10.1	0.2	0.0	2.2	0.3	5.7	0.5	0.1	9.8	3.6
0.3	1.7	1.6	18.9	0.2	0.1	0.1	0.1	6.1	8.4	0.2	1.1	0.0	0.4	0.6	0.0	0.3	8.0
2.2	0.2	2.1	16.2	0.0	0.0	0.1	0.0	0.0	2.8	0.1	8.0	0.3	3.0	0.3	0.6	1.3	6.8
1.4	1.1	0.0	0.0	12.3	1.8	4.0	0.1	1.2	6.2	2.5	3.7	2.1	2.3	0.6	1.7	1.3	6.5
0.0	0.0	0.0	0.0	1.8	0.0	0.0	3.3	0.1	0.0	0.1	1.1	3.4	0.6	5.3	0.0	2.2	1.4
0.0	0.4	0.2	0.9	1.8	0.1	0.0	2.0	0.0	2.4	0.4	7.1	0.9	0.8	0.1	0.0	0.0	5.7
3.4	5.0	1.6	1.3	0.5	3.8	5.1	1.6	2.6	2.8	4.6	3.1	0.0	0.3	0.4	1.8	0.1	0.0
0.6	1.1	5.8	0.0	1.4	7.5	1.1	1.0	6.8	0.5	1.8	2.7	0.3	7.6	2.0	0.3	0.1	0.3
2.5	1.7	1.4	2.1	1.4	0.0	1.3	1.5	0.0	3.7	0.1	1.1	2.7	4.8	1.2	8.9	0.0	0.8
1.5	1.2	5.7	0.0	0.8	8.2	1.3	2.3	1.0	4.9	2.4	2.5	1.1	2.2	0.4	3.0	4.8	0.9
2.0	0.2	0.2	0.0	0.8	1.5	0.5	1.9	1.0	0.2	1.7	1.7	2.1	2.0	2.1	5.7	0.2	8.6
1.8	1.5	0.2	1.1	0.6	0.3	1.7	0.4	0.9	0.5	0.2	3.6	2.2	1.5	2.3	0.6	2.0	7.0
0.3	1.7	1.0	0.7	0.6	0.0	0.8	0.5	1.4	1.1	1.1	2.8	0.5	1.3	0.3	0.0	0.5	0.3

Table S14 (cont.)-¹⁴N-¹⁵N Frequency difference in cm⁻¹ for singlet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
0.0	7.3	0.0	7.6	8.0	8.0	0.0	7.4	0.0	8.3	8.7	0.0	8.2	0.0	8.3	8.2	0.0	11.2
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3
0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34.2	15.8	35.7	12.9	14.7	14.8	28.1	0.0	0.2	0.0	13.7	38.3	0.1	38.7	0.6	0.1	20.8	11.2
0.0	0.1	0.0	0.1	0.2	0.2	0.2	15.5	29.9	20.5	7.2	0.0	11.9	0.1	7.4	2.1	0.1	1.1
0.0	1.4	0.0	6.3	5.0	4.8	0.8	9.7	3.3	1.0	0.4	0.0	7.0	0.0	7.7	11.1	1.1	3.3
0.0	4.1	0.0	5.4	6.4	6.5	0.2	2.2	1.6	13.5	0.9	0.4	2.7	0.0	9.3	2.3	0.0	0.0
1.1	3.3	0.0	1.9	0.3	0.2	1.8	0.6	1.3	0.2	1.0	1.4	4.4	0.0	7.6	11.6	0.8	3.2
0.7	0.1	12.0	4.8	2.8	2.5	0.1	0.2	3.1	0.6	0.2	0.8	0.0	1.3	0.0	2.3	5.9	3.5
0.0	0.8	0.0	2.0	4.5	4.5	2.6	3.1	0.5	2.2	3.4	1.6	7.1	0.1	0.0	2.0	0.8	4.8
0.4	2.2	0.0	1.7	1.1	1.5	1.1	0.2	3.5	0.1	0.3	1.7	7.8	0.4	4.8	5.3	0.8	4.9
2.3	3.6	0.1	0.3	0.4	0.6	0.3	0.0	1.0	2.8	4.3	0.9	9.3	3.2	3.6	9.2	1.9	0.2
2.6	3.1	9.5	1.9	0.4	1.8	1.8	0.4	6.8	0.0	3.8	1.1	0.1	3.6	0.1	0.1	2.4	1.1
5.5	2.0	9.5	0.5	2.3	0.9	0.8	4.9	1.8	4.7	1.5	7.0	0.0	8.0	1.6	0.2	0.0	0.5
2.8	0.5	0.1	1.3	1.3	0.9	1.7	2.8	4.0	1.1	0.5	4.7	0.0	1.9	1.9	0.3	4.1	0.1
5.5	1.3	0.1	1.5	0.6	0.4	1.5	0.2	1.4	2.1	1.4	1.3	8.0	1.7	1.2	4.9	7.7	1.6
1.4	2.9	0.7	0.4	1.3	1.5	1.5	0.6	0.8	1.5	1.2	0.5	0.0	0.7	0.0	1.3	3.2	1.2
0.3	1.8	0.7	0.7	0.7	0.7	1.8	1.1	0.3	0.3	0.7	0.1	0.3	0.6	0.7	1.4	1.6	2.3

Table S14 (cont.)-¹⁴N-¹⁵N Frequency difference in cm⁻¹ for singlet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1	70	45	73	0	4	2	3	67	48	112	2	84	118	6	74	104
1	2	0	0	49	4	20	7	3	0	38	2	4	16	1	27	2	5
6	1	1	5	10	0	49	15	12	5	119	11	16	30	1	58	8	3
135	24	5	1444	19	193	37	18	1	18	321	102	161	3	36	173	5	13
0	92	1	20	588	17	21	26	134	170	0	607	30	13	271	12	31	427
10	4	9	100	8	15	4	4	9	8	25	4	25	5	23	6	з	10
10	1	12	16	6	18	1	4	9	46	70	З	9	8	16	З	17	9
0	0	0	0	268	4	1	0	2	1	0	1	0	1	4	1	13	13
0	0	5	435	67	0	21	46	3	29	6	9	37	30	22	26	20	31
2	8	0	66	62	26	4	7	1	2	40	82	11	1	27	18	20	640
2	46	7	0	38	40	0	11	1	19	54	40	44	6	72	0	19	34
0	23	38	59	18	21	18	0	0	35	2	0	0	34	7	5	51	9
4	3	44	1	7	0	23	2	0	45	76	10	9	49	24	36	з	15
4	4	2	0	58	10	4	67	0	7	159	58	63	1	62	5	46	56
7	7	4	17	18	7	7	4	5	11	38	2	0	5	13	5	9	23
7	6	9	0	6	2	22	18	5	4	1	1	16	11	0	10	6	24
0	2	9	1	32	1	0	2	0	0	10	0	1	1	1	0	11	6
0	3	4	4	1	2	3	4	0	3	12	4	2	5	12	2	2	1

Table S15-IR Intensities in km/mol for singlet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

-																	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	1	5	66	3	0	2	4	2	1	0	3	3	0	3	1	6	13
7	8	5	35	3	0	1	24	3	9	2	1	8	9	5	8	1	1
25	0	12	211	21	7	4	2	7	2	27	1	20	21	19	20	26	3
19	11	0	15	1763	510	24	4	194	71	3	93	4	5	4	237	21	12
60	22	38	351	236	83	46	87	98	2	69	9	22	8	17	74	53	1
92	34	2	23	11	93	9	10	37	15	6	44	1	3	4	96	25	6
4	9	0	51	11	21	11	11	178	11	8	9	13	12	3	2	36	7
65	1	50	0	58	0	1	5	21	4	1	13	4	19	1	131	23	1
1	11	1	51	5	722	2	1	1	60	5	13	24	11	8	4	5	0
23	18	46	16	0	58	12	6	3	19	2	12	29	26	13	20	8	7
27	23	8	15	0	20	1	8	7	11	1	70	67	3	133	24	23	16
5	5	22	112	17	35	2	7	54	31	0	5	272	22	235	5	38	3
11	6	28	0	12	1	3	19	0	1	3	8	176	7	3	0	28	5
6	5	2	29	12	2	3	7	58	19	23	46	1	3	95	1	28	46
5	69	19	0	7	11	6	0	4	1	0	25	16	5	66	2	2	55
22	8	0	6	7	1	1	2	3	3	19	58	7	8	3	13	13	129
3	8	9	89	1	2	2	30	13	2	2	46	13	7	3	2	17	2
2	2	6	1	1	3	11	17	1	0	8	102	12	13	15	0	52	14

Table S15 (cont.)-IR intensities in km/mol for singlet C4H3¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
2	7	0	26	79	86	6	14	6	40	228	12	17	2	68	39	0	64
4	2	0	10	7	7	7	1	5	81	6	14	5	2	4	6	10	78
1	12	3	28	8	8	14	11	22	8	11	5	1	2	9	5	3	1
174	196	449	571	651	658	40	580	708	13	1479	203	0	142	13	52	339	404
25	5	588	22	15	19	37	4	151	53	147	107	6	17	50	12	1	3
39	38	11	5	3	4	9	10	24	5	4	6	8	10	22	6	26	5
5	34	11	2	3	1	17	13	54	7	16	41	33	17	23	2	6	27
41	64	11	13	8	12	13	22	12	21	47	12	8	1	23	15	36	11
10	5	25	323	32	26	18	4	112	17	4	2	6	4	1	8	58	3
15	35	3	62	341	306	23	4	20	7	25	40	37	2	47	22	1	39
40	10	3	1	63	56	8	27	52	35	22	19	38	15	72	21	6	30
4	72	2	9	79	46	52	2	33	35	546	7	0	0	8	0	14	11
3	51	2	4	8	18	20	83	10	48	47	21	65	0	14	6	3	23
2	37	2	42	65	64	12	3	14	23	5	10	0	8	5	87	10	13
11	21	1	27	11	51	1	32	48	35	98	1	55	2	30	119	23	3
38	41	1	10	19	27	10	2	24	41	108	4	46	2	16	49	15	7
5	27	1	10	16	10	9	12	6	14	5	22	0	2	12	145	9	23
2	3	1	18	35	22	7	24	24	2	4	15	170	10	7	45	2	185

Table S15 (cont.)-IR intensities for singlet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹. Reprinted (adapted) with permission from ²¹. Copyright (2016) American Chemical Society.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1	70	42	89	0	4	2	3	67	48	112	2	84	118	6	74	104
1	2	0	0	31	4	20	7	3	0	36	2	4	16	1	27	2	5
6	1	1	5	10	0	49	15	12	5	119	12	16	30	1	58	8	3
133	23	5	1419	22	184	37	17	0	1	318	82	152	3	34	164	5	16
1	92	1	22	568	16	21	26	129	178	0	615	30	12	257	12	30	404
10	4	9	96	8	15	4	4	9	8	22	4	25	5	24	6	з	10
10	1	12	18	5	18	1	4	9	46	69	4	9	8	18	3	17	8
0	0	0	0	268	4	1	0	2	1	0	1	0	1	4	1	13	13
1	0	5	436	68	0	21	46	3	29	6	8	37	30	23	26	20	32
2	9	0	66	61	27	0	6	1	2	40	82	10	1	27	18	20	641
2	46	7	0	38	40	5	12	1	19	54	40	46	5	72	0	19	34
0	23	38	59	21	21	18	0	0	35	2	0	0	34	7	5	46	9
4	3	44	2	4	0	23	2	0	45	50	11	9	47	23	37	7	15
4	4	2	0	58	9	4	68	0	7	185	57	64	2	64	5	46	56
7	7	4	17	17	7	7	4	5	11	36	2	0	5	11	5	9	21
7	6	9	0	6	2	22	16	5	4	1	1	15	11	0	10	6	25
0	2	9	1	33	1	0	1	0	0	10	0	1	1	1	0	11	5
0	3	3	4	1	2	3	4	0	3	11	4	2	5	12	2	2	1

Table S16-IR intensities for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	1	5	65	3	0	2	4	2	1	0	3	3	0	3	1	6	13
7	8	5	36	3	0	1	24	3	9	2	1	8	9	5	8	1	1
24	0	12	211	21	7	4	2	7	2	27	1	20	21	19	20	26	3
20	11	0	15	1789	471	24	3	183	72	3	85	4	6	3	221	20	13
60	22	37	345	185	97	46	87	95	2	69	9	22	7	17	75	50	1
92	34	1	19	11	97	9	10	36	15	6	45	1	4	4	96	25	5
4	9	0	53	11	21	11	11	180	10	8	9	13	12	3	2	36	7
64	1	49	0	58	0	1	5	21	6	1	14	4	17	1	132	24	1
0	11	1	51	5	723	2	1	2	56	5	11	25	11	9	5	5	1
23	18	46	16	0	57	12	6	3	19	2	11	29	26	13	20	8	7
27	22	8	15	0	20	1	9	7	31	1	70	66	З	134	24	23	14
5	5	22	116	17	35	2	7	53	12	0	6	272	22	234	5	38	3
11	6	25	0	12	1	3	19	0	19	3	8	176	7	3	0	28	6
6	5	1	25	12	2	2	7	58	1	23	47	1	2	99	1	28	50
4	69	20	0	7	10	6	0	4	1	0	25	16	5	61	2	2	47
22	8	0	6	7	1	1	2	3	3	18	57	7	8	3	12	13	5
3	8	9	89	1	2	2	29	13	2	2	45	12	7	3	2	16	126
2	2	6	1	1	3	11	17	1	0	8	101	12	12	15	0	51	14

Table S16 (cont.)-IR intensities for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
2	7	0	25	76	83	6	13	6	39	219	11	16	2	65	40	0	64
4	2	0	10	7	7	7	1	5	81	6	14	5	2	4	6	10	74
1	12	3	28	8	8	14	11	22	8	11	5	1	2	9	5	3	1
164	188	424	554	637	644	39	580	714	13	1471	193	0	136	13	52	337	397
25	5	591	22	15	19	37	3	139	51	138	107	6	17	44	12	1	1
39	35	11	5	3	4	9	9	27	5	4	6	11	10	23	7	26	6
5	24	11	2	3	1	17	14	50	7	17	41	32	17	23	1	6	28
42	80	11	11	8	12	13	23	5	21	45	12	8	1	21	13	37	11
11	5	27	327	27	22	18	4	111	17	4	2	6	5	1	9	55	3
15	35	3	61	347	308	23	4	20	7	29	40	34	2	47	23	1	43
40	10	3	1	63	57	9	27	52	35	20	20	38	15	73	21	6	29
4	71	2	9	79	46	51	2	34	34	537	7	0	0	7	0	13	12
3	54	2	4	12	17	19	82	9	48	48	21	65	0	14	6	4	21
2	34	2	42	61	65	12	3	14	24	6	10	0	8	5	87	10	13
11	21	1	27	11	50	1	32	47	34	98	1	54	2	29	117	12	3
38	41	1	10	19	28	10	2	24	42	108	5	46	2	17	51	24	7
4	27	1	10	16	10	9	12	7	13	5	22	0	2	12	143	9	43
2	3	1	18	34	22	6	24	23	2	4	15	170	10	7	44	2	164

Table S16 (cont.)-IR intensities for singlet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

-																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	0	0	3	-17	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	18	0	0	0	0	0	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	25	-3	9	0	1	1	17	3	21	9	0	2	8	0	-4
-1	0	0	-3	20	1	1	0	5	-8	0	-8	0	1	14	0	1	23
0	0	0	4	0	0	0	0	0	0	2	1	0	0	-1	0	0	0
0	0	0	-2	1	0	0	0	0	0	2	-1	0	0	-2	0	0	0
0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	-1	0	0	0	0	0	0	1	0	0	-1	0	0	0
0	0	0	0	1	-1	4	0	0	0	0	0	1	0	0	0	0	-1
0	0	0	0	0	0	-5	-1	0	-1	0	0	-2	0	0	0	0	0
0	0	0	1	-3	0	0	0	0	0	0	0	0	0	0	0	4	0
0	0	0	0	3	0	0	0	0	0	26	-1	0	2	1	0	-5	0
0	0	0	0	0	0	0	-1	0	0	-26	1	0	-1	-3	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	2
0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	-1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table S17- ¹⁴N-¹⁵N IR intensity difference in km/mol for singlet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	0	-26	39	0	0	11	0	0	8	0	-1	0	16	1	0
0	0	2	6	50	-14	0	0	3	0	0	0	0	1	0	-1	3	0
1	0	0	4	0	-3	0	0	1	0	0	-1	0	0	0	0	-1	1
-1	0	0	-2	0	0	0	0	-2	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	-1	0	-1	0	1	0	-1	-1	-1
0	0	0	0	-1	0	0	0	0	4	0	2	-1	0	0	-1	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	-1	0	-20	0	-1	1	0	-1	0	0	3
0	0	0	-4	0	0	0	0	1	18	0	-1	0	0	1	0	0	0
0	0	3	0	0	0	0	0	0	-18	0	0	-1	0	0	0	0	-1
0	0	0	3	0	0	0	0	0	18	0	-1	0	0	-4	0	0	-5
0	0	-1	0	0	1	0	0	0	0	0	0	0	0	4	0	0	8
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	125
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-124
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Table S17 (cont.)- 14N-15N IR intensity difference in km/mol for singlet C4H3N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

-																	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
0	0	0	1	3	3	0	0	0	1	9	0	1	0	3	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	7	25	17	15	14	1	1	-6	0	8	10	0	6	0	0	3	7
0	0	-3	0	0	0	0	1	13	2	9	0	0	0	6	0	0	1
0	3	0	0	0	0	0	1	-3	0	0	0	-3	0	-1	-1	0	0
0	10	0	1	0	0	0	-1	3	0	-1	0	0	0	0	1	0	0
-1	-15	0	3	0	0	0	0	7	0	1	0	0	0	1	1	-1	0
0	0	-1	-3	6	4	0	0	0	0	0	0	0	0	0	-1	4	0
0	0	0	1	-6	-2	0	0	0	0	-4	0	3	0	0	-1	0	-4
0	0	0	0	0	-1	-1	0	-1	-1	1	-1	0	0	-2	0	0	1
0	1	0	0	1	0	1	0	-1	1	9	0	0	0	1	0	1	0
0	-3	0	0	-4	2	1	0	1	0	-1	0	0	0	0	0	0	1
0	3	0	0	4	-1	0	0	0	0	-1	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	1	2	0	0	1	0	0	1	11	0
1	0	0	0	0	0	0	0	0	-1	1	0	0	0	-1	-2	-10	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	-20
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20

Table S17 (cont.)- ¹⁴N-¹⁵N IR intensity difference in km/mol for singlet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

Triplet C₄H₃N family (¹⁴N/¹⁵N comparison)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2953.0	3058.4	3328.2	3287.1	3331.0	3056.4	3028.3	3045.3	2964.8	2937.8	3473.9	3328.7	3043.3	3131.1	3316.0	3046.8	3318.2	3321.4
2928.0	2953.3	2897.6	3041.8	3319.4	2977.8	3002.4	3032.5	2906.1	2919.2	3315.8	3092.5	3030.8	3039.1	3081.8	2998.8	3020.6	2988.3
2846.5	2940.7	2789.4	2971.6	2965.5	2943.3	2939.0	2904.7	2820.8	2841.0	3262.0	2967.8	2909.3	2939.5	2951.7	2914.5	2744.2	2951.0
1954.1	2148.2	2129.8	1783.7	1980.3	2028.5	2030.6	2242.0	1882.3	2133.9	1798.7	1970.2	2114.1	1913.9	1830.8	1951.9	2011.3	2004.0
1702.7	1431.7	1577.7	1742.2	1590.8	1435.3	1411.7	1291.4	1524.6	1629.0	1578.7	1416.5	1305.7	1542.2	1500.3	1368.8	1407.0	1512.0
1388.5	1375.5	1326.5	1418.2	1292.9	1376.7	1346.2	1132.4	1393.6	1378.7	1544.1	1363.0	1157.4	1431.0	1420.0	1318.5	1260.9	1326.8
1373.2	1259.8	1212.2	1242.3	1140.4	1280.6	1049.1	1043.6	1364.3	1277.1	1305.3	1235.4	1046.3	1078.6	1267.0	1061.0	1018.1	1139.3
1321.5	1120.3	1103.7	1014.8	1041.4	1131.5	997.0	1014.9	1310.3	1193.5	1122.3	1042.8	1020.3	1034.9	1135.4	1031.9	961.7	1059.1
1043.4	997.0	949.7	977.2	886.7	1023.2	984.7	937.1	1110.5	995.2	788.8	848.0	938.0	964.2	854.8	979.3	914.0	925.8
988.0	859.6	868.8	792.4	732.6	863.5	937.4	911.7	990.5	944.2	633.5	819.5	907.7	840.1	814.6	915.4	765.6	726.5
934.1	802.0	786.4	711.9	695.5	781.3	925.1	809.6	818.1	869.3	603.6	606.8	818.1	660.7	568.2	881.1	717.7	681.0
756.0	727.6	665.1	710.8	631.0	709.8	749.4	797.6	742.2	834.0	551.9	562.7	788.0	601.4	532.3	773.8	653.5	654.9
510.3	605.3	662.2	513.1	555.3	583.0	662.0	707.0	449.7	635.1	464.0	523.6	704.4	505.7	487.0	688.7	593.1	558.5
505.5	538.0	476.4	395.1	531.3	503.0	625.7	699.2	377.1	443.8	434.1	461.2	688.3	377.5	424.1	614.6	542.4	541.5
363.3	427.1	384.0	365.0	402.9	358.9	545.6	492.0	311.8	341.5	391.4	433.5	421.7	340.2	420.1	453.0	457.3	393.6
268.1	321.2	323.2	196.6	390.4	278.0	435.9	424.7	163.2	256.1	246.0	394.4	346.4	254.8	363.2	379.8	286.8	366.6
137.3	183.6	205.4	141.2	171.8	189.2	191.9	198.5	151.1	184.8	142.3	148.5	188.9	174.6	148.4	194.4	203.3	171.5
99.6	148.9	110.1	123.3	163.3	144.9	154.5	197.4	138.4	99.7	119.8	137.7	175.8	144.4	133.8	176.9	143.4	170.7

Table S18- Frequencies in cm⁻¹ (scaled by 0.96) for triplet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
3121.9	3026.6	3332.1	2973.7	3067.6	3012.8	2974.1	3325.3	3126.4	2930.5	3130.4	3332.8	2967.9	3396.9	3396.8	3007.5	3324.5	3262.8
3029.2	3022.2	3220.9	2972.1	2992.0	2939.7	2928.1	3025.6	3033.1	2923.2	3097.3	3182.0	2958.4	3010.6	3010.6	2971.1	3137.9	2997.7
2957.1	2963.1	3038.8	2899.6	2929.2	2890.8	2911.5	3012.4	2998.7	2903.3	3076.1	2919.7	2881.1	2889.5	2889.5	2938.2	3000.0	2926.4
1815.5	1843.7	2123.7	1910.9	1933.5	2127.2	2257.7	2024.5	1695.5	2266.5	1455.1	1653.4	1786.1	2048.2	2048.2	2228.7	2089.0	1935.2
1489.3	1478.5	1416.5	1758.4	1615.5	1417.6	1541.7	1470.6	1450.1	1553.9	1379.7	1424.3	1694.3	1364.5	1364.5	1406.8	1309.3	1483.5
1455.3	1339.4	1346.1	1430.9	1419.1	1393.9	1397.8	1068.0	1348.9	1398.8	1267.0	1345.5	1403.2	1357.2	1357.1	1297.7	1235.3	1418.6
1318.6	1047.5	1169.9	1421.6	1283.7	1330.0	1264.0	1019.3	1291.4	1285.3	1224.6	1236.1	1382.7	1142.9	1142.9	1188.4	1065.8	1064.4
1208.9	911.7	1031.3	1375.0	1033.8	1144.4	1218.2	955.3	1161.5	1187.0	1061.3	1166.5	1331.0	1059.4	1059.4	1027.0	1041.3	1004.3
1020.0	903.5	846.9	1095.5	993.1	1041.4	1155.5	909.4	998.9	1164.6	1012.1	917.5	1056.0	936.7	936.7	1007.5	966.0	992.1
895.1	887.0	699.1	1071.0	771.6	966.0	958.8	857.5	868.9	953.3	1002.6	853.0	1028.6	855.9	855.9	974.5	935.5	989.5
855.5	845.4	670.8	1032.8	736.4	791.3	905.3	740.1	756.7	857.3	917.8	833.9	971.8	748.6	748.7	957.1	849.7	871.0
757.0	759.8	662.7	753.7	677.8	679.8	839.3	674.1	736.9	821.0	877.1	665.5	815.1	663.9	663.9	845.3	674.5	820.6
575.8	646.9	561.7	440.2	434.9	544.4	613.8	654.1	515.5	641.9	784.1	641.5	436.3	661.9	661.9	785.1	624.7	642.3
449.5	535.0	555.4	299.8	428.6	495.3	501.5	568.2	514.1	605.2	781.6	583.5	347.6	553.0	553.0	620.6	573.3	561.4
448.0	404.7	416.6	283.8	354.7	360.5	426.8	426.0	422.1	381.7	701.2	538.5	303.9	403.2	403.2	533.3	515.7	474.7
397.5	299.6	388.3	142.8	247.5	260.7	355.8	374.0	179.0	352.8	665.2	299.8	156.5	317.5	317.5	480.1	428.4	267.7
132.8	188.2	175.4	128.0	162.3	182.9	192.8	218.1	175.6	153.2	586.1	206.1	138.9	229.5	229.6	222.6	220.2	210.5
89.3	160.6	157.0	111.8	142.1	113.5	82.7	183.1	157.2	108.7	481.8	175.3	126.3	156.8	156.8	195.6	190.7	179.0

Table S18 (cont.)- Frequencies in cm⁻¹ (scaled by 0.96) for triplet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2953.0	3058.4	3328.2	3279.7	3323.5	3056.4	3028.3	3045.3	2964.8	2937.8	3464.7	3328.6	3043.3	3131.1	3316.0	3046.8	3318.2	3321.4
2928.0	2953.3	2897.6	3041.8	3319.4	2977.8	3002.4	3032.5	2906.1	2919.2	3315.8	3092.4	3030.8	3039.1	3081.8	2998.8	3020.6	2988.3
2846.5	2940.7	2789.4	2971.6	2965.5	2943.3	2939.0	2904.7	2820.7	2841.0	3256.7	2967.8	2909.3	2939.5	2951.7	2914.5	2744.2	2951.0
1934.7	2121.2	2129.7	1782.4	1980.1	1991.8	2005.8	2213.6	1847.7	2095.7	1798.6	1969.7	2076.0	1911.5	1829.6	1916.6	2011.2	2003.5
1696.3	1431.6	1556.6	1730.4	1571.4	1435.2	1409.0	1290.7	1524.5	1629.0	1570.7	1413.1	1305.4	1533.6	1496.5	1368.6	1388.3	1488.8
1388.5	1375.3	1326.5	1417.3	1291.7	1376.5	1345.3	1132.3	1393.6	1378.6	1542.9	1338.1	1156.8	1430.2	1415.7	1318.2	1258.2	1325.4
1373.2	1258.9	1212.1	1236.4	1136.8	1280.1	1048.9	1041.9	1364.3	1276.7	1294.3	1232.3	1045.4	1076.8	1246.2	1060.4	1016.2	1127.8
1321.5	1119.4	1103.1	1009.0	1039.8	1130.6	996.5	1014.9	1310.3	1192.0	1116.0	1038.8	1020.3	1020.2	1130.8	1031.8	958.8	1057.9
1039.7	993.7	949.3	977.2	885.5	1021.2	983.8	937.1	1108.9	994.8	785.8	842.7	937.8	964.0	854.1	979.1	904.9	923.5
987.5	857.2	868.5	792.4	732.3	862.4	937.0	910.7	990.4	942.5	631.4	819.5	907.1	826.3	807.5	914.6	765.5	725.0
934.1	802.0	784.6	709.1	693.8	781.3	924.4	809.6	817.0	867.6	601.0	602.4	817.9	660.3	565.2	880.6	716.9	680.8
751.6	727.6	665.1	705.9	631.0	709.8	748.5	793.2	740.3	833.3	551.9	562.7	785.7	600.9	532.2	773.4	653.4	654.9
508.9	605.1	662.2	512.6	555.3	582.1	661.7	706.6	443.1	634.2	462.3	520.7	704.2	505.0	485.4	685.8	593.1	555.7
504.3	535.2	475.3	394.7	527.2	496.1	622.0	698.9	370.3	437.2	434.0	460.8	686.1	376.1	423.8	613.6	537.5	541.5
362.0	425.3	379.0	364.6	402.8	352.3	544.3	489.9	308.6	341.2	389.4	432.5	414.9	339.7	419.3	446.5	456.2	392.7
266.9	319.7	323.0	195.9	387.8	275.3	433.6	423.4	163.1	251.1	246.0	393.9	341.6	253.6	360.3	372.6	285.8	362.2
137.0	182.8	204.9	140.6	170.0	188.8	190.1	197.0	150.7	183.1	141.7	147.4	187.9	174.3	148.3	193.1	201.5	170.3
98.5	147.4	108.5	122.5	162.4	144.4	153.4	195.1	138.2	99.6	119.2	136.1	174.1	144.3	133.4	175.9	142.8	169.2

Table S19- Frequencies in cm⁻¹ (scaled by 0.96) for triplet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
3121.9	3026.6	3332.1	2973.7	3067.6	3012.8	2974.1	3317.5	3126.4	2930.5	3130.4	3325.4	2967.9	3388.4	3388.3	3007.5	3324.5	3255.5
3029.2	3022.2	3214.0	2972.1	2992.0	2939.7	2928.1	3025.6	3033.1	2923.2	3097.3	3182.0	2958.4	3010.6	3010.6	2971.1	3131.1	2997.7
2957.1	2963.1	3038.8	2899.6	2929.2	2890.8	2911.5	3012.4	2998.7	2903.3	3076.1	2919.7	2881.1	2889.5	2889.5	2938.2	3000.0	2926.4
1796.4	1843.7	2122.5	1900.9	1933.3	2099.4	2228.6	2010.2	1678.8	2237.5	1452.7	1653.4	1767.7	2030.6	2030.5	2200.2	2089.0	1923.0
1484.0	1474.8	1405.3	1745.0	1586.8	1417.6	1541.7	1465.1	1449.8	1553.9	1370.2	1422.8	1684.4	1362.6	1362.6	1406.8	1304.0	1479.0
1455.2	1338.4	1343.0	1430.9	1417.2	1393.9	1397.8	1066.1	1346.5	1398.8	1265.9	1341.1	1402.8	1356.7	1356.7	1297.3	1228.3	1417.2
1316.7	1036.0	1155.3	1421.5	1281.9	1330.0	1263.9	1019.2	1288.3	1285.1	1223.9	1219.1	1382.7	1142.6	1142.5	1188.4	1063.6	1063.5
1208.9	905.5	1018.8	1375.0	1031.3	1142.4	1218.2	955.2	1161.3	1187.0	1061.1	1165.1	1331.0	1056.2	1056.2	1024.8	1039.3	1002.8
1019.4	903.4	843.1	1091.8	993.1	1040.8	1155.4	907.8	998.7	1164.5	1002.1	915.6	1045.1	931.7	931.7	1007.5	961.5	991.6
895.1	886.1	698.8	1069.1	771.6	965.9	958.3	851.7	868.9	949.4	999.1	853.0	1027.3	855.7	855.7	974.5	934.0	985.4
855.5	845.4	670.8	1020.2	730.0	788.1	900.0	739.0	756.7	857.2	917.2	833.8	971.8	744.6	744.7	955.7	846.7	864.4
751.7	757.7	656.6	748.1	677.3	677.7	838.1	672.9	735.8	818.8	877.1	664.9	809.9	662.3	662.3	845.1	674.5	820.2
575.8	639.8	561.7	437.3	433.9	543.6	613.2	649.7	514.4	639.2	781.0	641.3	433.8	660.7	660.7	781.5	624.7	641.4
447.5	532.0	554.1	298.7	425.5	494.5	499.9	567.6	514.1	605.1	771.7	583.5	346.8	551.8	551.8	620.3	570.2	559.2
445.8	404.1	415.8	283.8	351.0	359.2	426.2	424.9	412.6	380.5	701.2	534.0	301.7	402.2	402.2	531.7	515.3	473.2
395.6	299.2	387.7	141.8	245.7	258.8	353.4	373.8	178.4	350.4	661.0	299.0	154.5	316.5	316.5	478.5	422.7	267.6
131.8	187.2	174.1	127.4	162.3	180.6	190.6	216.7	175.4	151.0	581.1	205.2	137.4	228.9	228.9	220.6	219.7	209.0
88.7	160.4	156.5	111.5	141.7	113.5	82.3	181.7	155.6	108.5	479.6	173.4	126.3	155.3	155.3	193.3	189.1	177.6

Table S19 (cont.)- Frequencies in cm⁻¹ (scaled by 0.96) for triplet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	0.0	0.0	7.4	7.5	0.0	0.0	0.0	0.0	0.0	9.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19.4	27.0	0.1	1.3	0.2	36.7	24.8	28.4	34.6	38.2	0.1	0.5	38.1	2.4	1.2	35.3	0.1	0.5
6.4	0.1	21.1	11.8	19.4	0.1	2.7	0.7	0.1	0.0	8.0	3.4	0.3	8.6	3.8	0.2	18.7	23.2
0.0	0.2	0.0	0.9	1.2	0.2	0.9	0.1	0.0	0.1	1.2	24.9	0.6	0.8	4.3	0.3	2.7	1.4
0.0	0.9	0.1	5.9	3.6	0.5	0.2	1.7	0.0	0.4	11.0	3.1	0.9	1.8	20.8	0.6	1.9	11.5
0.0	0.9	0.6	5.8	1.6	0.9	0.4	0.0	0.0	1.5	6.3	4.0	0.0	14.7	4.6	0.1	2.9	1.2
3.7	3.4	0.5	0.0	1.2	2.0	0.9	0.0	1.6	0.4	3.0	5.3	0.2	0.2	0.7	0.2	9.1	2.3
0.5	2.4	0.4	0.0	0.4	1.1	0.5	1.0	0.2	1.8	2.1	0.0	0.6	13.8	7.1	0.7	0.0	1.5
0.0	0.0	1.8	2.9	1.7	0.0	0.7	0.0	1.0	1.7	2.5	4.4	0.1	0.5	2.9	0.5	0.8	0.2
4.4	0.0	0.0	4.9	0.0	0.0	0.8	4.4	1.9	0.6	0.0	0.0	2.4	0.5	0.0	0.4	0.0	0.0
1.4	0.2	0.0	0.5	0.0	0.9	0.3	0.4	6.7	0.9	1.7	2.9	0.3	0.8	1.6	2.9	0.0	2.8
1.2	2.8	1.0	0.4	4.1	6.8	3.7	0.3	6.8	6.6	0.1	0.4	2.2	1.4	0.2	1.0	4.9	0.0
1.3	1.9	5.0	0.5	0.2	6.6	1.3	2.1	3.2	0.4	2.1	1.0	6.8	0.4	0.8	6.5	1.1	0.9
1.3	1.4	0.1	0.8	2.6	2.7	2.3	1.3	0.0	5.1	0.1	0.5	4.7	1.2	2.9	7.2	1.1	4.4
0.2	0.9	0.4	0.6	1.8	0.4	1.8	1.5	0.4	1.7	0.6	1.1	1.0	0.3	0.1	1.3	1.8	1.3
1.1	1.5	1.6	0.8	0.9	0.4	1.1	2.3	0.2	0.1	0.6	1.6	1.6	0.1	0.4	0.9	0.5	1.6

Table S20-14N-15N frequency difference in cm⁻¹ for triplet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.8	0.0	0.0	0.0	7.4	0.0	8.5	8.5	0.0	0.0	7.3
0.0	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.8	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19.1	0.0	1.2	10.0	0.2	27.8	29.1	14.3	16.7	29.0	2.4	0.0	18.4	17.6	17.7	28.5	0.0	12.2
5.3	3.7	11.2	13.4	28.7	0.0	0.0	5.5	0.3	0.0	9.5	1.5	9.9	1.9	1.9	0.0	5.3	4.5
0.1	1.0	3.1	0.0	1.9	0.0	0.0	1.9	2.4	0.0	1.1	4.4	0.4	0.5	0.4	0.4	7.0	1.4
1.9	11.5	14.6	0.1	1.8	0.0	0.1	0.1	3.1	0.2	0.7	17.0	0.0	0.3	0.4	0.0	2.2	0.9
0.0	6.2	12.5	0.0	2.5	2.0	0.0	0.0	0.2	0.0	0.2	1.4	0.0	3.2	3.2	2.2	2.0	1.5
0.6	0.1	3.7	3.7	0.0	0.6	0.1	1.6	0.3	0.1	10.0	1.9	10.9	5.0	5.0	0.0	4.5	0.5
0.0	0.9	0.3	1.9	0.0	0.1	0.5	5.8	0.0	3.9	3.5	0.0	1.3	0.3	0.3	0.0	1.5	4.1
0.0	0.0	0.0	12.6	6.4	3.2	5.3	1.1	0.0	0.1	0.6	0.1	0.0	4.0	4.0	1.4	3.0	6.6
5.3	2.1	6.1	5.7	0.6	2.1	1.2	1.1	1.0	2.2	0.0	0.6	5.2	1.6	1.6	0.2	0.0	0.4
0.0	7.0	0.0	2.8	1.0	0.8	0.5	4.4	1.1	2.7	3.1	0.2	2.5	1.2	1.2	3.5	0.0	0.9
2.1	3.0	1.3	1.1	3.1	0.9	1.7	0.7	0.0	0.0	9.9	0.0	0.9	1.2	1.2	0.3	3.0	2.2
2.2	0.6	0.9	0.0	3.7	1.4	0.5	1.1	9.5	1.2	0.1	4.5	2.2	1.0	1.0	1.6	0.4	1.6
1.9	0.4	0.6	1.0	1.8	1.9	2.4	0.2	0.6	2.4	4.1	0.8	2.0	1.0	1.0	1.6	5.7	0.1
1.0	1.0	1.2	0.6	0.0	2.3	2.2	1.4	0.3	2.2	5.0	0.9	1.5	0.7	0.7	2.0	0.5	1.4
0.7	0.2	0.6	0.3	0.4	0.1	0.4	1.3	1.5	0.2	2.2	1.9	0.0	1.5	1.5	2.3	1.6	1.4

Table S20 (cont.)-14N-15N frequency difference in cm⁻¹ for triplet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	1	60	28	35	1	9	1	9	14	112	76	1	1	118	6	72	81
2	1	6	2	71	4	1	8	1	1	100	1	7	10	6	2	3	8
2	3	28	16	4	2	0	9	5	11	12	13	11	23	21	1	38	3
4	0	11	56	30	149	3	37	105	201	10	20	125	201	13	82	23	3
38	10	4	126	46	4	2	3	17	6	70	1	10	23	4	13	58	14
8	30	33	1	14	34	8	1	11	23	41	88	2	26	13	4	3	34
13	1	4	7	26	2	4	0	12	21	87	70	9	2	31	7	33	9
13	5	1	285	10	7	13	0	13	4	34	0	1	14	28	6	59	1
30	7	4	1	130	12	8	0	18	11	10	7	2	22	29	14	22	62
5	2	37	38	22	4	6	59	19	20	47	34	30	4	6	8	10	3
6	40	1	2	77	42	7	2	9	5	94	2	7	22	4	14	32	34
1	13	42	55	44	13	14	8	4	4	33	37	16	179	38	1	40	40
1	0	43	0	36	1	10	2	3	14	7	4	1	2	19	3	36	10
3	0	7	0	8	2	7	35	6	8	0	56	26	19	43	41	10	42
1	6	5	3	4	2	5	1	5	1	14	0	8	9	0	5	18	5
6	3	11	0	23	1	6	12	3	1	80	6	25	3	5	2	7	26
0	2	3	8	1	2	2	17	1	6	9	7	11	5	5	3	2	3
4	2	2	7	2	1	0	9	0	2	11	7	5	5	7	3	2	3

Table S21-IR intensities in km/mol for triplet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
2	0	87	9	2	4	1	45	2	0	1	4	1	123	123	3	70	9
1	8	5	16	7	4	2	6	1	9	3	48	2	5	5	1	3	12
2	2	7	56	6	4	1	27	0	2	6	28	5	46	46	6	4	30
0	71	З	5	4	119	5	615	27	4	6	22	292	575	575	8	11	375
6	3	30	504	7	4	26	6	5	18	54	28	46	4	4	2	50	15
3	3	20	24	5	6	9	8	8	9	19	93	27	45	45	6	2	14
1	2	28	11	14	7	2	6	20	1	1	37	22	15	15	6	68	19
0	3	5	29	87	70	3	1	6	1	17	29	2	7	7	9	22	28
0	1	117	18	1	476	2	41	5	4	23	0	1	19	19	9	45	84
5	11	45	2	42	1	1	339	15	1	2	40	34	13	13	23	37	198
50	48	36	27	11	614	1	51	47	11	2	62	0	512	512	6	43	4
1	34	6	1	19	478	5	0	9	1	0	85	23	24	24	16	39	6
3	8	56	9	2	26	2	5	78	1	26	65	40	35	35	5	42	35
7	2	18	73	21	410	2	3	6	1	0	27	57	52	52	4	30	45
8	3	2	17	0	45	3	196	62	2	64	9	22	32	32	1	10	9
2	7	22	15	3	17	0	2	1	1	1	48	1	11	11	0	2	1
0	1	1	17	6	16	6	13	1	3	0	2	6	22	22	8	1	4
1	2	4	0	10	0	5	1	0	0	10	13	2	14	14	6	0	2

Table S21 (cont.)-IR intensities in km/mol for triplet C₄H₃¹⁴N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	1	60	27	29	1	9	1	9	14	111	76	1	1	118	6	72	81
2	1	6	2	76	4	1	8	1	1	100	1	7	10	6	2	3	8
2	3	28	16	4	2	0	9	5	11	13	13	12	23	21	1	38	3
4	0	11	42	30	141	3	36	100	191	10	20	119	196	14	78	23	3
38	10	4	131	43	4	2	3	17	6	54	1	10	21	4	13	55	13
8	29	33	1	14	34	8	1	11	23	49	96	2	27	12	5	3	34
13	1	4	7	25	2	4	0	12	21	90	60	9	2	29	7	32	8
13	5	1	285	10	8	13	0	13	4	34	0	1	13	28	6	62	2
29	6	4	1	132	12	9	0	18	12	11	7	2	23	29	14	19	61
5	3	37	38	20	4	6	60	19	20	37	34	30	3	6	8	10	3
6	40	1	55	78	42	7	2	9	5	104	2	7	22	4	14	33	33
1	13	42	1	44	13	14	8	4	4	32	37	16	178	38	1	40	40
1	0	43	0	36	1	11	2	З	14	6	5	1	2	19	3	36	10
3	0	7	0	8	2	7	35	6	8	0	55	26	19	43	42	10	42
1	6	5	3	4	2	5	1	5	1	14	0	8	8	0	4	18	5
6	3	11	0	23	1	6	13	3	1	80	6	25	3	5	2	7	25
0	2	3	8	1	2	2	16	1	6	9	7	11	5	5	3	2	3
4	2	2	7	2	1	0	9	0	2	11	7	5	5	7	3	2	3

Table S22-IR intensities in km/mol for triplet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
2	0	87	9	2	4	1	43	2	0	1	4	1	119	119	3	70	9
1	8	6	16	7	4	2	6	1	9	3	48	2	5	5	1	3	12
2	2	7	57	6	4	1	27	0	2	6	28	5	46	46	6	4	30
0	71	З	0	4	118	5	597	25	4	4	22	277	561	561	8	11	362
6	3	36	498	6	4	26	7	5	18	53	29	53	2	2	2	48	14
3	3	16	24	5	6	9	8	7	9	18	84	28	47	47	6	3	15
0	2	26	11	14	7	2	6	20	1	1	43	22	15	15	6	67	21
0	3	2	29	88	70	3	1	6	1	18	28	2	8	8	9	21	14
0	1	117	20	1	477	2	48	5	4	5	0	3	17	17	9	39	13
5	11	44	2	42	1	1	327	15	1	18	40	32	13	13	23	41	280
50	48	36	23	10	636	1	55	47	11	2	62	0	509	509	6	45	4
1	34	8	1	19	457	5	1	9	1	0	85	22	44	44	16	38	5
3	8	56	8	2	25	2	4	73	1	0	64	39	18	18	5	42	34
7	2	18	72	20	410	2	4	6	1	27	27	58	52	52	4	30	45
7	3	2	17	0	44	3	195	62	2	64	8	22	31	31	1	10	9
2	7	21	14	3	17	0	2	1	0	1	48	1	12	12	0	2	1
0	1	1	17	6	15	6	13	1	3	0	2	6	21	21	7	1	3
1	2	4	0	10	0	5	1	0	0	10	13	2	14	14	5	0	2

Table S22 (cont.)-Intensities for triplet C₄H₃¹⁵N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

-																	
1	2	ß	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	0	0	1	7	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	-5	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0
-1	0	0	14	1	8	0	1	5	10	0	0	6	5	-1	4	0	0
0	0	0	-4	4	0	0	0	0	0	16	0	0	2	0	0	3	1
0	0	0	0	0	0	0	0	0	0	-8	-8	0	-1	1	0	0	0
0	0	0	0	1	0	0	0	0	0	-3	10	0	0	2	0	1	0
0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	-3	0
1	0	0	0	-1	0	-1	0	0	0	-1	0	0	-1	0	0	3	1
0	0	0	0	2	0	0	-1	0	0	10	0	0	1	0	0	0	0
0	0	0	-53	-1	0	0	0	0	0	-10	0	0	0	0	0	0	0
0	0	0	53	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table S23-14N-15N IR intensity difference in km/mol for triplet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

19	21	22	23	24	25	26	27	28	29	30	35	39	41	42	43	46	47
0	0	0	0	0	0	0	2	0	0	0	0	0	4	4	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	5	0	1	0	18	2	0	2	0	15	14	14	0	0	12
0	0	-6	5	1	0	0	-1	0	0	1	0	-7	2	2	0	2	1
0	0	4	0	0	0	0	0	1	0	1	9	-1	-1	-1	0	-1	-1
0	1	2	0	0	0	0	0	0	0	0	-5	0	0	0	0	1	-2
0	1	2	0	-2	-1	0	0	0	0	-1	0	0	-1	-1	0	1	14
0	0	0	-2	0	-1	0	-7	0	0	18	0	-1	2	2	0	6	71
0	0	1	0	0	0	0	12	0	0	-16	0	2	0	0	0	-3	-82
0	0	0	4	1	-22	0	-3	0	0	0	0	0	3	3	0	-2	0
0	0	-1	0	0	21	0	0	0	0	0	0	1	-19	-19	0	0	0
0	1	0	1	0	1	0	1	5	0	26	0	0	18	18	0	0	1
0	0	-1	1	1	1	0	0	0	0	-27	0	-1	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	0	1	0	1	1	0	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table S23 (cont.)-¹⁴N-¹⁵N IR intensity difference in km/mol for triplet C₄H₃N isomers. Numbering according to Fig. 1 and Custer et al 2016²¹.

Appendix 3-Photoproduct Details

Allenyl cyanide (2)

Beginning with allenyl cyanide (2) (Table 2, main text) the next lowest energy C_4H_3N isomer after cyanopropyne (1) a qualitative resemblance between bands can be seen for pure 2 and specific product bands appearing upon photolysis of 1 (Fig. 2, main text). However, certain differences are also evident. The most intense portion of a band is often shifted with respect to pure 2, as can be seen in Column B for the group of bands recognized as due to the v_4 vibration. Nevertheless, weak features directly matching the positions observed for a matrix spectrum of pure 2 sometimes surround the shifted bands (all columns of Fig. 2, main text). Substructures (splittings) observed in IR spectra of matrix-isolated chemicals are common and are due to occupation of dissimilar matrix sites. Differences between the structures of our reference bands and those of the photo-produced bands of 2 are also likely site splittings. A matrix cage well suited to 1 may not easily accommodate 2, and some vibrational modes of the photolysis product 2 may be constrained, causing deviations from expected frequencies. Microenvironment related effects may also affect the IR intensities of photoproduct bands²². This is also observed here and the relative intensities of product bands do not exactly match what is observed for the pure chemical in Ar although the most intense bands remain strong and the weakest ones remain difficult to detect. This variation in intensity can be seen by comparing relative peak heights from one column to the next in Fig. 2 of the main text where a common absorbance scale is used. On top of these effects, our IR intensity measurements were often uncertain due to difficulties in integrating very small peaks with poorly defined backgrounds caused by interference fringes produced by the particular configuration of the measurement equipment, gradual formation of H₂O and CO₂ ices due to inevitable leaks, and potential interferences from other photolysis products that form simultaneously. A number of potential cases of interference from similar photolysis products will be mentioned later. Higher resolution and signal-to-noise would reduce such problems.

Isotopic substitution of ¹⁵N for ¹⁴N in the precursor molecule supplied additional arguments for the identification of **2**. In particular, bands tentatively assigned to the v_3 mode of this product, observed following photolysis of ¹⁵N-**1**, are shifted by -25 cm⁻¹ with respect to those generated from ¹⁴N-**1** (Fig. S11). This is in good agreement with the calculated value of -28 cm⁻¹ listed in Table 2 of the main text. Negligible isotopic shifts (less than 1 cm⁻¹ or zero) are observed for v_4 , v_9 , and v_{15} , bands, a result also predicted by calculations. A negligible isotopic shift is observed for features at 1417 and 1415 cm⁻¹ in the region of the v_5 bands (Fig. S14), also in agreement with calculations, although it is likely that this feature has contributions from **3** as well as other species. The peak assigned to v_8 exhibits a shift of approx. -3 cm⁻¹ with a calculated shift on the order of -5 cm⁻¹ (Fig. S13).

In addition to peak location, intensity, and isotopic shifts, the evolution of band intensity as a function of photolysis time can also provide support for identification. Its usefulness as a diagnostic depends on a number of interconnected factors including the intensity of the band being integrated, the level of congestion surrounding or underlying that band, the total extent of photolysis for a particular experiment, and the kinetics of different product formation. Integrated intensities plotted as a function of irradiation time for the features detected at 2228, 1986, 918-914, 858, and 836 cm⁻¹ share a common rate of growth and agree with the proposed spectral assignments. While we are confident that the bands at 1417 and 1415 cm⁻¹ are associated, at least in part, with v_5 of **2**, they are not unique to this chemical and the time evolution does not aid in its identification.

Fig. S9-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 92 km/mol.

Fig. S10-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 46 km/mol.

Fig. S11-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -28 cm⁻¹. Calculated intensity is 24 km/mol.

Fig. S12-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 23 km/mol.

Fig. S13-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -5 cm⁻¹. Calculated intensity is 8 km/mol.

Fig. S14-Allenyl cyanide (2) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 4 km/mol.

Propargyl cyanide (3)

After allenyl cyanide, the next isomer in order of decreasing thermodynamic stability is propargyl cyanide (3) (Table 3, main text). For the pure, Ar-isolated sample, a multiplet structure dominated by two strong bands is observed in the 3320 to 3340 cm⁻¹ acetylenic C-H stretching region (Fig. 3, Column A, bottom, main text). While this is not perfectly reproduced in product bands following photolysis of 1, a strong feature at 3328.4 cm⁻¹ falls between the two strongest features for this band observed in the pure sample. The v_{16} mode has a higher intensity than v_9 but is out of range of the PIIM measurements pictured in Fig. 3 in the main text. This mode was measured in IPC PAS. While v_9 has a reproducible position whether it appears as a photolysis product or a pure substance (Fig. 3, Column E, main text) other modes may differ depending on the origin of the chemical (pure substance vs photolysis product). The v_6 mode of propargyl cyanide standard isolated in Ar has strong features at 1285 and 1292 cm⁻¹ (Fig. 3, Column C, bottom, main text). Once again, the matrix sites shift in intensity and position to form a strong feature at 1288.5 cm⁻¹ (Fig. 3, Column C, top, main text) when it is formed by photolysis of 1. This feature exhibits more structure when formed via the 193 nm photolysis of 1 (Fig. 3, Column C, top, main text) where there is a peak at 1288.9 and a weaker band at 1291.4 cm⁻¹. As stated earlier, features at 1417 and 1415 cm⁻¹ (Column B) associated with v_5 have a contribution from both 2 and 3 which cannot be separated. None of the bands of propargyl cyanide mentioned to this point are predicted to exhibit a ¹⁵N isotopic shift and none is apparent in the spectra. Only the v_8 , v_3 , and v_7 bands are predicted to have measurable isotopic shifts (-4, -29, -2 cm⁻¹ respectively). Candidates only exist for v₃ although none is intense making confirmation difficult using their time evolution. The peak visible at 896 (Fig. 3, Column D, main text) appears at 893 cm⁻¹ following photolysis of ¹⁵N-1 (Fig. S34 and Fig. S35, Column C) giving an isotopic shift of ~-3 cm⁻¹ and is assigned to the v_8 mode. Overall, bands at 3328, 1289, 896, and 662 share a similar time evolution and seem to be free of interference. As will be discussed later, the time evolution of these peaks differs significantly from those assigned to allenyl cyanide, also suggesting that they belong to a distinct photoproduct. Overall, this evidence makes us confident that propargyl cyanide (3) is also formed as a photolysis product of 1. Like 2, this photoproduct appears at all photolysis wavelengths tested here.

Fig. S15-Propargyl cyanide (**3**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 70 km/mol.

Fig. S16-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (732 min, middle trace) and ¹⁵N-1 (240 min, top trace) using 193 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 44 km/mol.

Fig. S17-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 38 km/mol.

Fig. S18-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Green trace from 193 nm photolysis showing site structure of this band more clearly (scale not common with other traces). Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 12 km/mol.

Fig. S19-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 9 km/mol.

Fig. S20-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Green trace from 193 nm photolysis showing site structure of this band more clearly (scale not common with other traces). Predicted ¹⁴N-¹⁵N frequency shift is -4 cm⁻¹. Calculated intensity is 4 km/mol.

Fig. S21-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -29 cm⁻¹. Calculated intensity is 5 km/mol.

Fig. S22-Propargyl cyanide (3) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -2 cm⁻¹. Calculated intensity is 5 km/mol.

Allenyl Isocyanide (6)

Although cyano/isocyano isomerization is one possible photolysis process in the matrix environment, it is difficult to prove formation of either allenyl isocyanide (**6**) or propargyl isocyanide (**10**) unambiguously from these experiments. Starting with **6**, a potential candidate for v_3 can be found at 2135 cm⁻¹ (see Table 4, main text) following photolysis of ¹⁴N-**1** (Fig. 4, Column A, top, main text). A shifted feature can be found at 2097 cm⁻¹ starting from ¹⁵N-**1** and is pictured in Fig. S34 or S35, column A or Fig. S23. This gives an implied isotope shift of -37 cm⁻¹, close to the value of -38 cm⁻¹ predicted by calculations. Evidence of a peak near 876 cm⁻¹, the value for v_9 observed for authentic **6** isolated in Ar (Fig. 4, Column D, main text), also exists following Ly- α photolysis. This feature is very near the signalto-noise limit and exhibits no isotope shift (with none expected), which argues for its belonging to **6**. Further evidence can be found for potential v_8 bands near 948 cm⁻¹ and 954 cm⁻¹ (Fig. 4, Column C, main text and Fig. S25) which exhibit isotope shifts near -3 cm⁻¹, values close to what are predicted. Moving to the region near v_{15} , there is no good evidence of a band belonging to **6** with the only visible features already assigned to **2** (Fig. 2, Column E, main text). There is no evidence of production of **6** using 193 nm or 248 nm light for photolysis.

Fig. S23-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -38 cm⁻¹. Calculated intensity is 193 km/mol.

Fig. S24-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 40 km/mol.

Fig. S25-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -3 cm⁻¹. Calculated intensity is 26 km/mol.

Fig. S26-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 21 km/mol.

Fig. S27-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -1 cm⁻¹. Calculated intensity is 18 km/mol.

Fig. S28-Allenyl isocyanide (**6**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift (v₄) is 0 cm⁻¹. Calculated intensity is 17 km/mol. Predicted ¹⁴N-¹⁵N frequency shift (v₇+v₉) is -1 cm⁻¹. Calculated intensity is 40 km/mol.

Fig. S29-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 15 km/mol.

Fig. S30-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (732 min, middle trace) and ¹⁵N-1 (240 min, top trace) using 193 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift is -5 cm⁻¹. Calculated intensity is 10 km/mol.

Fig. S31-Allenyl isocyanide (6) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -1 cm⁻¹. Calculated intensity is 4 km/mol.

Propargyl isocyanide (10)

As the v_1 mode of propargyl isocyanide (**10**) is obscured by the appearance of the strong v_1 absorption of **3** (Fig. S33, S34, and S35, Column A), evidence for the production of **10** centers around the feature at 2160 cm⁻¹ which is a candidate for the strongest band of this species (Fig. S33, S34 or S35, Column B and Fig. S37). This value is close to what is observed for v_3 or v_4 in the pure, matrix isolated chemical (Fig. S33, Column B, bottom) and approximately 21 cm⁻¹ away from the predicted gas-phase value (Table S24). Based on recent gas-phase assignments of v_3 and v_4 of **10** by Benidar et al., v_4 of **10** is centered at 2147 cm⁻¹ and v_3 at 2157 cm⁻¹. In matrix spectra, four peaks belonging to one or another of these fundamentals and reflecting a complicated site structure can be clearly discerned spanning 2147 to 2156 cm⁻¹ (Fig. S33, Column B, bottom and Fig. S37). Although v_4 and v_3 have not been unambiguously identified in the matrix spectra, upon formation due to photolysis, only v_4 is expected to be visible as it is predicted to have an intensity much higher than that of v_3 . Assuming a small shift due to its production as a photolysis product, the feature at 2160 cm⁻¹ can be tentatively connected to one or more of the v_3/v_4 peaks between 2147 and 2156 cm⁻¹.

While not producible using 248 nm radiation, the feature at 2160 cm⁻¹ can be generated with reasonable efficiency using both 193 nm radiation (Fig. S35, Column B) and Ly- α radiation (Figs. S33 and S34, Column B). This feature is not observed when using ¹⁵N-**1** as a precursor and instead, a feature near 2122 cm⁻¹ appears indicating a shift of -39 cm⁻¹ (Figs. S34, Column B and S34, ESI). Calculations predict that the isotope shift for **10** should be -37 cm⁻¹, a value very close to what is measured for this pair. The connection between 2160 cm⁻¹ and 2122 cm⁻¹ was further confirmed by performing an experiment using an equimolar mixture of ¹⁴N-**1** and ¹⁵N-**1** precursors (Fig. S35, Column B, bottom). Photolysis at 193 nm of this mixture resulted in production of both peaks simultaneously and both exhibited the same time evolution (Fig. S36).

Potential C₄H₃N candidates for the 2160/2122 cm⁻¹ isotopic pair can also be determined using the density functional predictions of energies, IR frequencies, and ¹⁴N-to-¹⁵N shifts for various isomers. Filtering this data for species which have an energy with respect to **1** of less than 200 kJ/mol in addition to having a mode with a ¹⁴N-to-

¹⁵N bathochromic shift of greater than -34 cm⁻¹ and a position between 2100 and 2200 cm⁻¹ leaves only **6**, **10**, or **13** (Tab. S25 and Fig. S32). Production of **6** has already been discussed and does not appear at 2160.0 cm⁻¹. Evidence arguing against production of **13**, the isocyano isomer of the cyclic compound **8**, hinges on the fact that little (or no) **8** was produced during photolysis. This leaves **10** as the most reasonable possibility. However, as no other band from this compound can be reliably identified (Fig. S33), its photochemical creation remains to be unambiguously proven.

Table S24. Main IR absorption bands for propargyl isocyanide (10) as theoretically predicted (harmonic approximation, frequencies scaled by 0.96) and experimentally observed. Relative intensities are given in parentheses. Empty entries were not detected. Ranges generally indicate the most intense features of a multiplet with possible weak features falling outside the range. Peak locations are rounded to the nearest wavenumber. See Appendix 3 for detailed Figs of these regions.

	(Calculation		Experiment Experimental frequency in cm ⁻¹ (Relative IR intensity)							
	B3LYP/aug-cc-p in cm ⁻¹ (R	VTZ Vibration elative IR inte	al frequency nsity)								
				Literature	This Work						
	Literature ²¹	This	Work	Gas ²³	Ar Matrix	Ar Matrix From CH₃C₃¹⁴N phot.	Ar Matrix From CH₃C₃¹⁵N phot.				
	¹⁴ N ^a	¹⁵ N freq. shift		¹⁴ N	¹⁴ N ^b	¹⁴ N	¹⁵ N	¹⁴ N- ¹⁵ N freq. shift			
V 4	2139 (100)	2101	-37	2147	2156-2147 (100) ^d	2160	2122	-39			
V 1	3329 (39)	3329	0	3332	3332-3318 (66)	3332-3327 ^c	3332-3327 ^c				
ν_6	1321 (27)	1321	0	1350	1347-1345 (38)						
V 16	657 (26)	657	0	645	645-641 (23)						
V 9	691 (20)	691	0	667	672 (20)						
V 7	955 (17)	953	-1	989	984 (20)						
V8	876 (11)	874	-2	908	906-902 (26)						
V 3	2150 (11)	2149	-1	2157	d						
ν ₅	1415 (5)	1415	0	1446	1442-1440 (1) ^e						

^aRelative to v_4 with a value of 171 km/mol.

 ${}^{b}\mbox{Relative intensities in this table are lower limit as <math display="inline">\nu_{3}$ and ν_{4} cannot be distinguished.

 $^{\rm c}\mbox{Overlap}$ with strong bands from ${\bf 3}$ prevent identification.

^dContribution from \mathbf{v}_4 and \mathbf{v}_3 cannot be separated.

 $^e\text{Assignment}$ tentative due to nearby combination $\nu8{+}\nu10^{23}$

Table S25-C₄H₃N isomers featuring the largest ¹⁴N-to-¹⁵N IR band shifts (see text). Results of B3LYP/aug-cc-pVTZ predictions. Isomer numbering according to Custer et al 2016²¹. See Fig. S2 for the isomeric structures.

Species	mode	¹⁴ N (cm ⁻¹)	¹⁵ N (cm ⁻¹)	Shift (cm ⁻¹)	Intensity (km/mol)
6	ν_3	2110	2071	-38	193.0
9	ν_3	2059.7	2025	-35	134
10	ν_4	2139	2101	-37	170.5
13	ν_4	2115.3	2077.9	-37.4	161.1
15	ν_5	1953.2	1915.3	-37.9	270.6
16	ν_3	2096.2	2057.7	-38.5	172.8
18	ν_5	1916.2	1876.4	-39.8	426.7
34	V_4	1918.2	1884.1	-34.1	237.1
37	ν_4	1908.7	1874.5	-34.2	173.8
39	ν ₂	2270.2	2234.5	-35.7	448.9
48	V_4	2132.1	2093.8	-38.3	202.9
50	ν_4	2105.4	2066.7	-38.7	142.2

Fig. S32-structures of species corresponding to Table S24.

Fig. S33-Top: difference spectrum showing irradiation of ¹⁴N-1 in an Ar matrix (Ly- α , 121.6 nm, ~23h) using the unphotolyzed, freshly deposited 1 in Ar as background. Bottom: freshly deposited, Ar matrix isolated **10** for the regions surrounding bands of highest intensity for **10**. Bands assigned to **10** are indicated. Absorbance scale for all columns in a given row are identical and baselines shifted to allow direct visual intercomparison of intensities.

Fig. S34-Expanded view of Fig. 10, columns A and D, as well as Fig. 11, Column A. Bottom: product bands observed upon Ly-α (121.6 nm, ~23h) photolysis of ¹⁴N-1. Top: product bands observed upon Ly-α (121.6 nm, ~12h) photolysis of ¹⁵N-1. Absorbance scale for all columns in a given row are identical and baselines shifted to allow direct visual intercomparison of intensities.

Fig. S35-Expanded view depicting compounds produced upon photolysis of ¹⁵N-1 (top), ¹⁴N-1 (middle), and a mixture of ¹⁴N-1/¹⁵N-1 (bottom) using 193 nm laser radiation. Irradiation conditions: exposure to 10 Hz pulses of ~0.2 mJ/cm² for 360 min (bottom), ~0.1 mJ/cm² for 732 min (middle), 0.3 mJ/cm² for 380 min (top).

Fig. S36-Correlation between integrated intensities of bands located at 2160 and 2121.5 cm⁻¹ provisionally assigned to isomer **10** produced upon irradiation of a mixture of ¹⁴N-1 and ¹⁵N-1 with 193 nm light.

Fig. S37-Propargyl isocyanide (**10**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift (v₄ of **10**) is -37 cm⁻¹. Calculated intensity is 171 km/mol. Predicted ¹⁴N-¹⁵N frequency shift (v₃ of **4**) is -3 cm⁻¹. Calculated intensity is 1444 km/mol.

Fig. S38-Propargyl isocyanide (**10**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 57 km/mol.

Fig. S39-Propargyl isocyanide (10) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 46 km/mol.

Fig. S40-Propargyl isocyanide (10) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (732 min, middle trace) and ¹⁵N-1 (240 min, top trace) using 193 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift is -2 cm⁻¹. Calculated intensity is 45 km/mol.

Fig. S41-Propargyl isocyanide (10) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 35 km/mol.

Fig. S42-Propargyl isocyanide (10) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -1 cm⁻¹. Calculated intensity is 29 km/mol.

Fig. S43-Propargyl isocyanide (**10**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -2 cm⁻¹. Calculated intensity is 19 km/mol.

Fig. S44-Propargyl isocyanide (**10**) standard (bottom trace) in Ar and as formed following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 8 km/mol.
1,2,3-butatrien-1-imine (4)

Isomer 4, CH₂CCCNH, is more stable than any of the three lowest-energy isonitriles on the C₄H₃N PES (Fig. 1) according to calculations. The only potential trace of 4 in this data consists of a shoulder on the peak at 2160 cm⁻¹ for the most intense band of this molecule (Fig. 12, middle column, calculated intensity of 1444 km/mol) that was only visible following 121.6 nm photolysis. A partner band observed following photolysis of ¹⁵N-1 appearing at 2157.9 cm⁻¹ (a shift of 3.1 cm⁻¹) is consistent with what is predicted for this species (3 cm⁻¹). There are several additional bands of 4 expected to have reasonable intensities including v₇ (falling near 941 cm⁻¹ and having an intensity of 435 km/mol), v₅ (falling near 1448 cm⁻¹ and having an intensity of 100 km/mol), v₈ (falling near 757 cm⁻¹ and having an intensity of 66 km/mol), and v₁ (falling near 3342 cm⁻¹ and 45 km/mol) (See Figs S42 to S48, ESI). While candidates exist for v₇, there is no good evidence for any of the other bands of isomer 4 making this attribution quite tentative.

Fig. S45-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of 14 N-1 (1365 min, middle trace) and 15 N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Only one possible assignment exists for v₃ which is partially obscured by a band from v₄ of **10**. No evidence of this peak can be seen for 193 nm or 248 nm photolysis experiments.

Fig. S46-1,2,3-butatrien-1-imine (4) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Only one possible assignment exists for v₃ which is partially obscured by a band from v₄ of 10. No evidence of this peak can be seen for 193 nm or 248 nm photolysis experiments. Predicted ¹⁴N-¹⁵N frequency shift is -2.7 cm⁻¹. Calculated intensity is 1444 km/mol.

Fig. S47-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -5.7 cm⁻¹. Calculated intensity is 435 km/mol.

Fig. S48-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -6.1 cm⁻¹. Calculated intensity is 100 km/mol.

Fig. S49-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 66 km/mol.

Fig. S50-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -2 cm⁻¹. Calculated intensity is 59 km/mol.

Fig. S51-1,2,3-butatrien-1-imine (**4**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly-α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -7.6 cm⁻¹. Calculated intensity is 45 km/mol.

1-isocyano-1-propyne (9)

In addition to the isocyano species 6 and 10 which have already been discussed, additional effort was also expended to search for 1-isocyano-1-propyne (9). Gas-phase vibrational frequencies are available for 9 in the literature²⁴ which, in conjunction with the theoretical predictions, help to more narrowly constrain expected frequencies in a matrix (Figs S52 to S56). While a number of candidates for v_3 falling within 10 cm⁻¹ of its measured gas-phase band center (2083 cm⁻¹) might be postulated, it is difficult to unambiguously associate any one of these with a ¹⁵N partner having a shift of -35 cm⁻¹. The congested nature of this region and small peak intensities makes integration as a function of time problematic and this strategy does not provide any additional information. Modes v_8 and v_1 should not exhibit any isotopic shift, but there are no promising features falling near their gas-phase band centers (1447.9 and 2941 cm⁻¹ respectively) that can be considered as strong candidates. No further evidence for this species was observed during photolysis at 193 nm or 248 nm or employing a mixture of ¹⁴N-1 and ¹⁵N-1 as a starting material. Although chemical intuition might lead one to expect formation of 9, no evidence exists pointing to its formation. This might be rationalized in part using the energies and number of isomers separating the cyano and isocyano forms. While the calculated energy difference of 112 kJ/mol²¹ between 9 and 1 is similar to that separating nitriles from isonitriles discussed in the introduction, the number of isomers intervening between 1 and 9 is higher for C₄H₃N isomers than for H-CC-CC-NC, NC-CC-NC, NC-CC-CC-NC, or H-CC-NC each of which was the next most stable species following the respective most stable parent nitrile.

Fig. S52-1-isocyano-1-propyne (9) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation.

Fig. S53-1-isocyano-1-propyne (9) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -34.8 cm⁻¹. Calculated intensity is 134 km/mol. While features "s" (¹⁴N, red) and "u" (¹⁵N, blue) seem to shift, it is impossible to unambiguously confirm that either can be associated with **9**. Studies using 193 nm radiation and a mixture of ¹⁴N and ¹⁵N-1 do not show this structure and do not aid in identification.

Fig. S54-1-isocyano-1-propyne (9) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 18 km/mol. Features in the red curve at 1436 cm⁻¹ belong to ¹⁴N-1 or ¹⁵N-1 while features at 1417 cm⁻¹ and 1415 cm⁻¹ belong to a combination of **2** and **3**. No convincing candidate for this band exists in experimental spectra.

Fig. S55-1-isocyano-1-propyne (9) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₁ is 0 cm⁻¹. Calculated intensity is 6 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₁ is 0 cm⁻¹. Calculated intensity is 6 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₁ is 0 cm⁻¹. Calculated intensity is 12 km/mol. Without convincing evidence of the most intense band near 2082 cm⁻¹, it is very unlikely that these unassigned features, whose intensities must be ~10% of the most intense band, can belong to **9**.

Fig. S56-1-isocyano-1-propyne (**9**) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 2 km/mol.

Fig. S57-1-isocyano-1-propyne (9) theoretical spectrum (peak position from Buerger et al. 2000^{24} peak maximum B3LYP/aug-cc-pVTZ intensity) (bottom trace) along with spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -5 cm⁻¹. Calculated intensity is 1 km/mol.

3-cyanocyclopropene (8)

Cyclic species 3-cyanocyclopropene (8) should be considered as a potential, if not probable, product. Up to thirteen different modes were reportedly observed in earlier studies and are listed in Table S26. Comparing our own results with these values (Figs S58 to S63), one would expect to reproduce at least some of the most intense bands which include v_9 , v_{14} , v_4 , v_3 , v_{10} , and v_2 with calculated intensities of 67, 46, 26, 18, 18, and 15 km/mol, respectively. At all irradiation wavelengths, a feature in the same location as was previously reported for v_{14} of 8 (986 cm⁻¹) can be found (Fig. S33, Column D). Much like peaks attributed to 6 and 10, the time evolution of this band strongly resembles that of 2, although its attribution to this chemical can be ruled out. No trace of this feature was seen in a pure sample of 2. This peak is strong for both 248 nm experiments and 121 nm experiments but much weaker during 193 nm photolysis. The more intense mode for 8 (v_9 reportedly at 624 or 623 cm⁻¹) can be clearly seen following 248 nm photolysis and falls at 623 cm⁻¹ with an isotope shift of -2 cm⁻¹, close to the predicted value of -1 cm⁻¹ (Fig. S58, Column E and S63). The v₉ band was out of range for 121 nm radiation experiments and not observable for 193 nm experiments, although for 193 nm radiation the intensity of the v_{14} band at 986 cm⁻¹ was also much smaller than at other wavelengths possibly putting v_9 below our limit of detection. No further bands can be identified from laser photolysis experiments. However, very small features at 1664 and 1671 cm⁻¹ can be found in 121.6 nm irradiation experiments which were also reported to belong to v_4 , although only one or another of these bands were described in the different publications and never the two together. If a reversal in the intensities of bands v_9 and v_{14} is assumed to occur upon its formation by photolysis, a reasonable assumption as changes in intensity are frequently observed in such products, these measurements may support the observation of 8. However, the low intensity of these signals and limits in the data-sets used for analysis prevent any firm conclusions from being reached.

	Custer 2016 ²¹			Torker et al. 2014 ²⁵				Hill and Platz 2003 ²⁶		
	B3LYP/aug-cc-pVTZ			B3LYP/6-31G*		Experiment		B3LYP/6-31G*		Experiment
Mode	Scaled Harmonic Freq. (cm ⁻ ¹)	Intensity (km mol ⁻ 1)	Shift	Scaled Harmonic Freq. (cm ⁻ ¹)	Intensity (km mol ⁻¹)	Freq. (cm ⁻¹)	Intensity	Scaled Harmonic Freq. (cm ⁻¹)	Intensity (km mol ⁻¹)	Freq.(cm ⁻¹)
ν ₁	3176.3	2.5	0	3162	5			3208	0.9	2193
V12	3129.3	7.1	0					3162	2.7	3160
V2	2972.5	14.8	0	2990	37	2995	m	2990	22.5	
ν ₃	2240.6	18.1	-29	2260	22	2241	m	2261	12.2	2239
V4	1671.5	25.9	0	1691	33	1664	m	1691	18.8	1670
V5	1314.4	4	0	1331	8	1352	w	1332	4.6	1316
ν ₆	1091.8	4.1	-1	1113	6			1113	3.6	
V13	1007.3	0.5	0	1011	8			1012	4.5	1027
V14	969.98	46	0	974	77	986	s	975	46.8	983
V7	924.37	7	-3	932	11	949	w	933	6.7	948
V8	869.28	11	-3	876	21	888	m	876	11.8	859
V15	827.44	0	0					812	0	
V16	790.15	1.9	0	800	2			800	1.2	837
V9	620.37	67.1	1	619	100	623	S	618	57.1	624
V17	551.17	3.9	1	554	8			554	4.3	559
V ₁₀	536.53	17.6	2	535	29	543	m	535	16.7	543
V18	220.3	1.5	2					223	1.2	
V11	210.3	4 1	3					211	3.4	

Table S26-Ar matrix isolated observations of species 8, 3-cyanocyclopropene.

Fig. S58-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Hill and Platz 2003²⁶ and Torker et al. 2013²⁵ (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. For the v₉ region, which was out of range for the Ly-α measurements, spectra following 248 nm photolysis of ¹⁴N-**1** (319 min, middle trace) and ¹⁵N-**1** (320 min, top trace) are given. Intensities for the v₉ region cannot be compared to other regions.

Fig. S59-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Torker et al. 2013^{25} (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 15 km/mol.

Fig. S60-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Hill and Platz 2003²⁶ and Torker et al. 2013²⁵ (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is -29 cm⁻¹. Calculated intensity is 18 km/mol.

Fig. S61-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Hill and Platz 2003²⁶ and Torker et al. 2013²⁵ (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift is 0 cm⁻¹. Calculated intensity is 26 km/mol.

Fig. S62-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Hill and Platz 2003²⁶ and Torker et al. 2013²⁵ (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-1 (1365 min, middle trace) and ¹⁵N-1 (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₁₄ is 0 cm⁻¹. Calculated intensity is 46 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₇ is -2.5 cm⁻¹. Calculated intensity is 7 km/mol.

Fig. S63-3-cyanocyclopropene (**8**) theoretical spectrum (peak position and maximum from B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace) in addition to frequencies reported by Hill and Platz 2003²⁶ and Torker et al. 2013²⁵ (peak maximum from B3LYP/aug-cc-pVTZ intensities). Spectra following photolysis of ¹⁴N-1 (319 min, middle trace) and ¹⁵N-1 (320 min, top trace) using 248 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift is -1.4 cm⁻¹. Calculated intensity is 67 km/mol.

1-cyano-2-propeneylidene (triplet) (19)

Fig. S64-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly-α (121.6 nm) radiation. For v₁₃, v₁₄, and v₁₅, which were out of range for the Ly-α measurements, spectra following photolysis of ¹⁴N-**1** (732 min, middle trace) and ¹⁵N-**1** (240 min, top trace) using 193 nm radiation are given.

Fig. S65-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₂ is 0 cm⁻¹. Calculated intensity is 1 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₃ is 0 cm⁻¹. Calculated intensity is 2 km/mol.

Fig. S66-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₅ is -5.3 cm⁻¹. Calculated intensity is 6 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₅ is 0 cm⁻¹. Calculated intensity is 3 km/mol.

Fig. S67-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (1365 min, middle trace) and ¹⁵N-**1** (741 min, top trace) using Ly- α (121.6 nm) radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₁₀ is 0 cm⁻¹. Calculated intensity is 50 km/mol.

Fig. S68-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (732 min, middle trace) and ¹⁵N-**1** (240 min, top trace) using 193 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₁₃ is 0 cm⁻¹. Calculated intensity is 3 km/mol.

Fig. S69-Triplet 1-cyano-2-propeneylidene (**19**) theoretical spectrum (peak position and maximum are B3LYP/aug-cc-pVTZ frequency and intensity) (bottom trace). Spectra following photolysis of ¹⁴N-**1** (732 min, middle trace) and ¹⁵N-**1** (240 min, top trace) using 193 nm radiation. Predicted ¹⁴N-¹⁵N frequency shift for v₁₄ is -2 cm⁻¹. Calculated intensity is 7 km/mol. Predicted ¹⁴N-¹⁵N frequency shift for v₁₅ is -2 cm⁻¹. Calculated intensity is 8 km/mol.

Fig. S70-Acetylene spectrum (peak position and maximum following experimental measurement of Golovkin 2013²⁷) (bottom trace). Spectra following photolysis of ¹⁴N-1 (1365 min, top trace) using Ly-α (121.6 nm) radiation.

Fig. S71-IR spectrum after 1365 min of 121 nm photolysis of 14 N-1 using the H₂ discharge lamp.

Fig. S72-IR spectrum after 741 min of 121 nm photolysis of 15 N-1 using the H₂ discharge lamp.

Fig. S73-IR difference spectrum following 731 min photolysis of ¹⁴N-1 at 193 nm (10 Hz, ~0.1 mJ cm⁻² pulse⁻¹ or ~10¹⁴ photons cm⁻² pulse⁻¹).

Fig. S74-IR difference spectrum following 360 min photolysis of a mixture of ¹⁴N-1/¹⁵N-1 at 193 nm (10 Hz, ~0.2 mJ cm⁻² pulse⁻¹).

Fig. S75-IR difference spectrum following 319 min photolysis of ¹⁴N-1 at 248 nm (10 Hz, ~7 mJ cm⁻² pulse⁻¹ or 1016 photons cm⁻² pulse⁻¹).

Fig. S76-IR difference spectrum following 320 min photolysis of ¹⁵N-1 at 248 nm (10 Hz, ~6 mJ cm⁻² pulse⁻¹ or ~10¹⁶ photons cm⁻² pulse⁻¹).

Appendix 4-Rate Coefficients and Excited State Potential Energy Surface

 Table S27-Rate coefficients obtained by fitting data from Fig. 13, panels A, B, and C to equations 1 to 3.

Rate Coefficient (s ⁻¹)					
k _{1,2}	0.0019				
k _{1,3}	0.00035				
K _{2,3}	0.00027				
k _{3,2}	0.00051				
k1	0.0030				
k ₂	0.0045				
k₃	0.0018				
k _{Phot}	0.0024				

Fig. 577-Optimized singlet structures and their associated, optimized triplets. Both 19 and 20 share the lower energy triplet 19 T. Structures and energies of geometries reached upon vertical excitation will differ from the optimized values pictured here.

Fig. 578-Structures representing the reaction coordinate for transformation of 1 into 19 on the S_0 surface (Column B, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting with -8 and ending at 8.

Fig. S79-Structures representing the reaction coordinate for transformation of 19S into 19T on the T_0 surface (Column C, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting with 0 and ending at 4.5.

Fig. S80-Structures representing reaction coordinate of the transformation of 19 to 2 on the " T_1 " potential energy surface (Column D, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting with -3 and ending with 7.

Fig. S81-Structures representing the reaction coordinate for relaxation of 2 from its T₁ state to the ground state (Column E, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting with 0 and ending at 6.

Fig. S82-Structures representing the reaction coordinate of 2 converting to 3 (Column F, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting from -5 and ending at 5.

Fig. S83-Comparison of transition state on the ground-state potential energy surface linking 2 and 3 (A) and closest structure on the triplet-state energy surface (B) in Fig. 7.

Fig. S84-Structures following the reaction coordinate for the transformation of 1 to 9 on the S₀ surface (Column A, Fig. 7). Numbering follows the reaction coordinate of Fig. 7 starting with -11.9 and ending at 11.9.

References

- 1. N. Lamarre, C. Falvo, C. Alcaraz, B. Cunha de Miranda, S. Douin, A. Flütsch, C. Romanzin, J. C. Guillemin, S. Boyé-Péronne and B. Gans, *J. Mol. Spectrosc.*, 2015, **315**, 206-216.
- 2. D. Strübing, H. Neumann, S. Klaus, S. Hübner and M. Beller, *Tetrahedron*, 2005, **61**, 11333-11344.
- 3. A. Chrostowska, A. Matrane, D. Maki, S. Khayar, H. Ushiki, A. Graciaa, L. Belachemi and J.-C. Guillemin, *ChemPhysChem*, 2012, **13**, 226-236.
- 4. H. Møllendal, S. Samdal, A. Matrane and J. C. Guillemin, *J. Phys. Chem. A*, 2011, **115**, 7978-7983.
- 5. J. W. Zwikker and R. W. Stephany, *Synth. Commun.*, 1973, **3**, 19-23.
- 6. E. K. A. Wolber, M. Schmittel and C. Rüchardt, *Chem. Ber.*, 1992, **125**, 525-531.
- 7. V. A. Apkarian and N. Schwentner, *Chem. Rev.*, 1999, **99**, 1481-1514.
- 8. V. E. Bondybey, M. Rasanen and A. Lammers, *Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.*, 1999, **95**, 331-372.
- 9. B. Meyer, *Low Temperature Spectroscopy*, American Elsevier Pubishing Company, Inc., New York, 1971.
- 10. S. Radhakrishnan, J. Mieres-Perez, M. S. Gudipati and W. Sander, *J. Phys. Chem. A*, 2017, **121**, 6405-6412.
- T. A. B. Miller, Vladimir. E., in *Molecular Ions: Spetroscopy, Structure, and Chemistry*, ed. T. A.
 B. Miller, Vladimir E., North-Holland Publishing Company, Amsterdam, New York, Oxford, 1983, pp. 126-173.
- 12. J. Fulara, S. Leutwyler, J. P. Maier and U. Spittel, *J. Phys. Chem.*, 1985, **89**, 3190-3193.
- 13. N. Lamarre, B. Gans, L. A. Vieira Mendes, M. Gronowski, J. C. Guillemin, N. De Oliveira, S. Douin, M. Chevalier, C. Crépin, R. Kołos and S. Boyé-Péronne, *J. Quant. Spectrosc. Radiat. Transfer*, 2016, **182**, 286-295.
- 14. R. Kołos, M. Gronowski and P. Botschwina, J. Chem. Phys., 2008, **128**, 154305.
- 15. M. Turowski, M. Gronowski, S. Boyé-Péronne, S. Douin, L. Monéron, C. Crépin and R. Kołos, *J. Chem. Phys.*, 2008, **128**, 164304.
- 16. A. Coupeaud, M. Turowski, M. Gronowski, N. Piétri, I. Couturier-Tamburelli, R. Kołos and J.-P. Aycard, *J. Chem. Phys.*, 2008, **128**, 154303.
- 17. J. Sadlej and B. O. Roos, *Chem. Phys. Lett.*, 1991, **180**, 81-87.

- J. A. Halpern, G. E. Miller, H. Okabe and W. Nottingham, J. Photochem. Photobiol., A, 1988, 42, 63-72.
- 19. F. Borget, S. Müller, D. Grote, P. Theulé, V. Vinogradoff, T. Chiavassa and W. Sander, *Astron. Astrophys.*, 2017, **598**, A22.
- 20. U. Szczepaniak, R. Kołos, M. Gronowski, M. Chevalier, J.-C. Guillemin, M. Turowski, T. Custer and C. Crépin, *J. Phys. Chem. A*, 2017, **121**, 7374-7384.
- 21. T. Custer, U. Szczepaniak, M. Gronowski, E. Fabisiewicz, I. Couturier-Tamburelli and R. Kolos, *J. Phys. Chem. A*, 2016, **120**, 5928-5938.
- 22. A. Coupeaud, R. Kołos, I. Couturier-Tamburelli, J. P. Aycard and N. Piétri, *J. Phys. Chem. A*, 2006, **110**, 2371-2377.
- 23. A. Benidar, D. Begue, F. Richter, C. Pouchan, M. Lahcini and J.-C. Guillemin, *ChemPhysChem*, 2015, **16**, 848-854.
- 24. H. Bürger, D. Lentz, B. Meisner, N. Nickelt, D. Preugschat and M. Senzlober, *Chem.-Eur. J.*, 2000, **6**, 3377-3385.
- 25. S. Torker, D. Kvaskoff and C. Wentrup, J. Org. Chem., 2014, **79**, 1758-1770.
- 26. B. T. Hill and M. S. Platz, *Phys. Chem. Chem. Phys.*, 2003, **5**, 1051-1058.
- 27. A. V. Golovkin, D. I. Davlyatshin, A. L. Serebrennikova and L. V. Serebrennikov, *J. Mol. Struct.*, 2013, **1049**, 392-399.