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Markov State Model (MSM) construction

Markov state model is a powerful and reliable approach to identify key conformations from MD 

simulation trajectories1-3. An MSM constitute of a network of conformation sets, extracted from 

simulation trajectories, with the transition probability matrix (T), characterizing the memoryless 

transition between states in a short time interval defined as lag time(τ). For a markov state 

model, time evolution of the system can be defined by the following equation

𝑃(𝑡0 + 𝑛𝜏) =  𝑇𝑛(𝜏) 𝑃(𝑡0)

Where   and  are probability distribution of the states at time   and ; and 𝑃(𝑡0 + 𝑛𝜏) 𝑃(𝑡0) 𝑡0 + 𝑛𝜏 𝑡0

T(τ) is the transition probability matrix at the given lag time (τ).

The first step of MSM construction is featurization of raw MD simulation trajectories, using 

relevant matrices, i.e., cartesian coordinates of atoms, root mean square deviation, dihedral 

angles and distance between set of atoms. The next step involve the dimensionality reduction of 

input feature vectors using various approaches like  principle component analysis (PCA) or time-

structure independent component analysis4-5 (tICA). Principle component (PCs) and time-

structure independent component (tICs) are the linear combination of feature vectors having 

weight depicting the relevance of the corresponding vector. However, the difference in the 

above-mentioned projection approaches is that PCA is based on high variance linear combination 

of input feature vectors, whereas tICAs is based on high autocorrelation linear combination of 

the features. Once projected to tICA subspace, various clustering approaches, like k-means, k-

centers can be used to obtain the discrete microstates, which will generate an assignment space, 

in which each conformation in the simulation trajectory will be assigned to the closest 

microstate. The next step involves the construction of MSM transition probability matrix P (τ) by 

counting the number of transitions among the microstates, using maximum likelihood approach. 
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To ensure the Markovian behavior of the model, multiple transition probability matrices can be 

constructed for different lag times and the relaxation timescales of the system can be estimated 

as

𝜏𝑖 =  ‒
𝜏

ln 𝜆𝑖(𝜏)

Where  is the implied timescale corresponding to an aggregate transition between subsets of 𝜏𝑖

states in MSM, is the lag time, while is the eigen value of the transition probability matrix. If 𝜏 𝜆𝑖

the model is Markovian, implied timescale must be independent of lag time6.

In our study, we used backbone dihedrals matrices to generate initial feature vector, which were 

further subjected to tICA to project the input feature vectors to a low-dimensional subspace that 

best preserves the slowest conformational transitions. Once projected to the tICA subspace, 

distance-based clustering using the k-means algorithm, was performed to obtain the MSM 

metastable state definitions. The MSM transition matrix T (τlag) was estimated using the 

maximum likelihood method7. Implied timescales that plateau near the chosen lag time of 5 ns 

indicates that the chosen lag time is sufficient for MSM construction. 

The microstates were further grouped together into Macrostates using robust Perron Cluster 

Cluster Analysis (PCCA) algorithm8, grouping kinetically similar microstates. All models were 

built using MSMBuilder 3.37 and MDTraj 1.59 software package.
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Table S1: Structural order parameters for the AFGP variants. Radius of gyration (Rg), end to end 
distance (Ree), solvent accessible surface area (SASA) and dihedral RMSD. 

AFGP Variant <Rg> ± 𝜎 (nm) <Ree> ± 𝜎 (nm) <SASA> ± 𝜎 (nm2) <dihedral RMSD> ± 𝜎 (˚)
AFGP1 1.42 ± 0.11 2.84 ± 1.13 38.44 ± 1.80 22.39  ± 2.57
AFGP2 1.23 ± 0.13 2.72 ± 0.83 36.27  ± 1.40 28.73  ± 1.20
AFGP3 1.29 ± 0.17 2.93 ± 1.05 41.14  ± 1.85 29.58  ± 2.77
AFGP4 1.43 ± 0.11 3.46 ± 0.96 40.95  ± 1.34 29.27  ± 2.01
AFGP5 1.30 ± 0.15 2.43 ± 1.09 41.95  ± 2.53 31.57  ± 2.81

Table S2: The slow component of the relaxation time (τ2) obtained from the Two-term 
exponential fitting parameters for the H-bond time autocorrelation functions of water-water H-
bonds for the 1st and outer solvation shells around the five AFGP systems evaluated from 263 K, 
268K, 271K, 273K and 298K simulations. 

𝜏2(𝑝𝑠)Temperature
(K) AFGP1 AFGP2 AFGP3 AFGP4 AFGP5 Bulk 

Water
1st solvation shell (0 
Å - 3.5 Å) 

24.14 15.37 18.29 13.42 17.51
263

Outer solvation shell 
(10.0 Å – 12.0 Å)

8.27 8.62 8.55 8.38 9.01
7.63

1st solvation shell (0 
Å - 3.5 Å) 

12.58 14.80 12.95 13.43 15.80
268

Outer solvation shell 
(10.0 Å – 12.0 Å)

6.67 6.82 6.82 6.67 6.97
6.11

1st solvation shell (0 
Å - 3.5 Å) 

17.67 13.62 11.78 10.61 13.49
271

Outer solvation shell 
(10.0 Å – 12.0 Å)

6.07 5.93 6.01 5.84 5.97
5.79

1st solvation shell (0 
Å - 3.5 Å) 

13.61 12.88 10.52 11.30 12.48

273 Outer solvation shell 
(10.0 Å – 12.0 Å)

5.63 5.90 5.61 5.58 5.66
5.23

1st solvation shell (0 
Å - 3.5 Å) 

6.70 5.78 5.44 4.88 14.26
298

Outer solvation shell 
(10.0 Å – 12.0 Å)

3.08 3.12 3.21 2.83 6.00
3.03
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Figure S1. Density estimation of the (a) radius of gyration p(Rg), (b) end to end distance p(Ree) 
and (c) solvent accessible surface area p(SASA) and (d) pseudo dihedral angles for all the 5 
AFGP variants, using a Gaussian kernel.
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Figure S2. Graphical representation of pseudo dihedral angles (  defined as the 𝜙1, 𝜙2,𝜙3,𝜙4 𝑎𝑛𝑑 𝜙5)

dihedral angles formed between O3 oxygens of the first sugar attached to the protein, with the 
other two atoms being the Thr Cα atoms of the underlying peptide backbone, i.e. O3-Cα-Cα-O3.
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Figure S3. Clustered conformation with Fractional population for all the five AFGP variants.
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Figure S4. 2D relative free energy surfaces for the  distributions corresponding to the peptide 
backbone obtained from the structures belonging to the most populated clusters for (a) AFGP1 
(cluster1), (b) AFGP4 (cluster2) and (c) AFGP5 (cluster2).
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Figure S5. Nw(r) distribution for water molecules as a function of distance evaluated in 
increments of 0.2 Å shells from (a) whole glycoprotein, (b) carbohydrates only and (c) around 
peptide backbone at 263 K.
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