SUPPLEMENTARY INFORMATION

Percolation behaviors of ionic and electronic transfers in Li_{3-2x}Co_xN

J.C. Badot *^{1,4}, E. Panabière ², N. Emery ², O. Dubrunfaut ³, S. Bach ², and J.P. Pereira-Ramos ²

 ¹ Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
 ² Institut de Chimie et des Matériaux Paris-Est, CNRS, Groupe d'Electrochimie et Spectroscopie des Matériaux (GESMAT), 2-8, rue Henri Dunant - 94320 Thiais, France
 ³ GeePs |Group of Electrical Engineering - Paris, UMR CNRS 8507, CentraleSupélec, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Université Paris-Saclay, 11 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
 ⁴ Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France ⁵ Université d'Evry Val d'Essonne, Dept Chimie, Bd F. Mitterrand, 91000 Evry

S1. Dielectric spectroscopy device used for measurements from 60 Hz to 10 GHz

Complex permittivity and conductivity of $Li_{3-2x}Co_xN$ were measured by the broadband dielectric spectroscopy (BDS) from 60 to 10^{10} Hz, using simultaneously a network analyzer Agilent PNA E8364B (10^7 to 10^{10} Hz), two impedance analyzers Agilent 4294 (60 to 1.1_x10^8 Hz) and Agilent 4291 (10^6 to 1.8_x10^9 Hz). The experimental device consists of a coaxial cell (APC7 standard), in which the cylindrically shaped sample (diameter = 3 mm and thickness \approx 1 mm) fills the gap between the inner conductor and a short-circuit (Fig. S1).

Figure S1 .Schema of the cell for dielectric measurements between 60 and 10^{10} Hz

The sample is covered with a silver paint on its two opposite sides to have good electrical contacts with coaxial waveguide. The brass ring allows to ensure the electrical continuity of the outer-conductor of the coaxial waveguide.

S2. Determination of ionic and electronic conductivities of Li_{3-2x}Co_xN grains

Conductivity Nyquist plots of $Li_{3-2x}Co_xN$ (x = 0, 0.05 and 0.18)

Conductivity Nyquist plots (σ " vs. σ ') are more obvious than the resistivity Nyquist plots (ρ " vs. ρ ') in some cases (see Fig. S2). The grain bulk conductivity is plotted by a straight line in the conductivity complex plane. This straight line can be transformed by inversion into a circular arc which passes through the origin in the resistivity complex plane. Hence, it sometimes easier to draw a straight line than a circular arc in higher frequency range.

Figure S2. High frequency part of complex conductivity Nyquist plots (σ "(ω) vs. σ '(ω)) for the samples: a) Li₃N (LCN0), b) Li_{2.9}Co_{0.05}N (LCN1) and c) Li_{2.64}Co_{0.18}N (LCN4) at 300 K: evidence of straight line giving the grain conductivity σ_g .

Resistivity Nyquist plots of $Li_{3-2x}Co_xN$ (x = 0.25)

Figure S3. Complex resistivity Nyquist plots (ε "(ω) vs. ε '(ω))for the sample Li_{2.5}Co_{0.25}N at 300 K: a) evidence of the relaxation domain R1 (particle/particle contacts) in the entire plot from 40 to 10¹⁰ Hz (*the deviation from R1 is due to contact sample/silver paint in the lower frequency range*); b) evidence of the relaxation domain R2 (grain/grain contacts). ρ_g is the grain resistivity inverse of the grain conductivity σ_g .

S3. Dielectric relaxations in Li_{3-2x}Co_xN samples

Permittivity Nyquist plots of Li₃N

Figure S4. Nyquist plots of the imaginary part $\varepsilon''(\omega)$ vs. the real part $\varepsilon'(\omega)$ of the complex permittivity at 300 K for the sample Li₃N: a) entire plot from 40 to 10¹⁰ Hz: only the low frequency contribution P1 is visible; b) plot obtained upon subtracting the domain P1: evidence of the relaxation domains P2 (sample polarization) and P3 (particle polarization); c) plot obtained upon subtracting domains P2 and P3: evidence of the relaxation domain P4 (grain polarization); d) plot obtained upon subtracting the domain P4: evidence of the relaxation domain P5 (local Li⁺ hopping).

*Permittivity Nyquist plots of Li*_{2.50}*Co*_{0.25}*N*

Figure S5. Nyquist plots of the imaginary part $\varepsilon''(\omega)$ vs. the real part $\varepsilon'(\omega)$ of the complex permittivity at 300 K for the sample Li_{2.50}Co_{0.25}N: a) entire plot from 40 to 10¹⁰ Hz: only the low frequency contribution P1 is visible; b) plot obtained upon subtracting the domain P1: evidence of the relaxation domains P2 (sample polarization) and P3 (particle polarization); c) plot obtained upon subtracting domains P2 and P3: evidence of the relaxation domain P4 (grain polarization); d) plot obtained upon subtracting the domain P4: evidence of the relaxation domain P5 (local Li⁺ hopping); e) plot obtained upon subtracting the domain P5: evidence of the relaxation domain P6 (local electron hopping).

Figure S6. Nyquist plots of the imaginary part $\varepsilon''(\omega)$ vs. the real part $\varepsilon'(\omega)$ of the complex permittivity at 300 K for the sample Li_{2.64}Co_{0.18}N: a) entire plot from 40 to 10¹⁰ Hz: only the low frequency contribution P1 is visible; b) plot obtained upon subtracting the domain P1: evidence of the relaxation domains P2 (sample polarization) and P3 (particle polarization); c) plot obtained upon subtracting domains P2 and P3: evidence of the relaxation domain P4 (grain polarization); d) plot obtained upon subtracting the domain P4: evidence of the relaxation domain P5 (local Li⁺ hopping); e) plot obtained upon subtracting the domain P5: evidence of the relaxation domain P6 (local electron hopping).

Permittivity Nyquist plots of Li_{2.12}Co_{0.44}N

Figure S7. Nyquist plots of the imaginary part $\varepsilon''(\omega)$ vs. the real part $\varepsilon'(\omega)$ of the complex permittivity at 300 K for the sample Li_{2.12}Co_{0.44}N: a) entire plot from 40 to 10¹⁰ Hz: only the low frequency contribution P1 is visible; b) plot obtained upon subtracting the domain P1: evidence of the relaxation domains P2 (sample polarization) and P3 (particle polarization); c) plot obtained upon subtracting domains P2 and P3: evidence of the relaxation domain P4 (grain polarization); d) plot obtained upon subtracting the domain P4: evidence of the relaxation domain P6 (local electron hopping).

Summary of the interfacial contributions

Table S1. Space-charge dielectric relaxations contributions (sample, particle and grain polarizations) at room temperature. s is the parameter of the power-law term $A(i\omega)^{s-1}$ of the lower frequency part of the complex permittivity (see expression 7 in the manuscript). v_s , v_p and v_g are the relaxation frequencies of sample, particle and grain polarizations, respectively. v_{0g} and E_g are respectively the prefactor and the activation energy of v_g . $\Delta \varepsilon_s$, $\Delta \varepsilon_p$ and $\Delta \varepsilon_g$ are the dielectric strengths of sample, particle and grain polarizations, respectively.

	Low-frequency	Sample	Particle	Grain P4	
	Power law P1	Р2	Р3		
	S	$\nu_{\rm s}$ (Hz) $\Delta \varepsilon_{\rm s}$		$ \nu_{g} (Hz) $ $ \Delta \epsilon_{g} $	$ \nu_{0g} (Hz) E_g (eV) $
Li ₃ N	0.30	1.0×10 ⁵	4.0×10 ⁶	5.0×10 ⁷	4.1×10 ¹²
x = 0.00*		90	90	14	0.28
$Li_{2.90}Co_{0.05}$	0.45	1.7×10 ³	2.0×10 ⁶	2.0×10 ⁷	6.0×10 ¹²
x = 0.05*		1700	123	17	0.31
$\begin{array}{l} Li_{2.76}Co_{0.12}N\\ x=0.12^{*} \end{array}$	0.06	4.0×10 ³ 800	6.3×10 ⁴ 3300	1.3×10 ⁷ 160	6.1×10 ¹² 0.33
$Li_{2.64}Co_{0.18}N$	0.06	1.4×10 ⁴	3.0×10 ⁵	7.0×10 ⁷	4.7×10 ¹²
x = 0.18*		100	1000	80	0.28
$Li_{2.50}Co_{0.25}N$	0.01	2.0×10 ³	3.4×10 ⁵	1.8×10 ⁸	1.1×10 ¹³
x = 0.25*		2000	3000	83	0.29
$Li_{2.36}Co_{0.32}N$	0.02	3.0×10 ⁴	4.0×10 ⁵	5.0×10 ⁷	1.3×10 ¹²
x = 0.32**		1100	3900	80	0.26
$Li_{2.22}Co_{0.39}N$	0.01	8.0×10 ⁴	1.0×10 ⁶	1.0×10 ⁸	9.0×10 ¹¹
x = 0.39**		400	4780	94	0.23
$Li_{2.12}Co_{0.44}N$	0.00	3.0×10 ⁵	7.0×10 ⁷	3.9×10 ⁸	1.2×10 ¹²
x = 0.44**		800	1700	34	0.21

* Ionic conductors; ** Electronic conductors.

S4. Dielectric relaxation and percolation [1]

Inhomogeneous conducting materials have a percolation thresholds which depend largely on their geometries (dimensionality, structure). These materials contain a conductive region mixed with an insulating (or low conductive) region. The conductive region is constituted by clusters in which the charge carriers move freely. The isolated clusters electrically polarized with a dielectric response given by a relaxation whose main parameters are the dielectric strength $\Delta\varepsilon$ (related to the polarization intensity and the cluster size) and the relaxation time τ which corresponds to the transit time from one edge to the other of the cluster.

The dielectric strength $\Delta \varepsilon$ and the relaxation frequency $v = 1/2\pi\tau$ of a percolating system are given by the following power law forms [1]:

$$\Delta \varepsilon \sim \left| \phi - \phi_c \right|^{-s} \tag{S4.1}$$

$$\nu \sim \left|\phi - \phi_c\right|^{s+t} \tag{S4.2}$$

below and above ϕ_c . f is the volume fraction of the conductor, ϕ_c the percolation threshold. s and t are critical exponents.

Below the threshold, the material is an insulator because the clusters are not connected. Thus the size ξ of the clusters increases until some of them become percolated through the sample (at the threshold). The dielectric strength $\Delta \varepsilon$ and the relaxation time τ (i.e. the transit time from one edge to the other of the cluster), which vary in the same way as ξ , tend toward ∞ (or a great value) at the threshold according to the percolation theory (see Fig. 9d and 9e of the manuscript). The relaxation frequency $\nu = 1/2\pi\tau$ tends thus toward zero (or a minimum value) at the threshold.

[1] A.L. Efros, B.I. Shklovskii. Phys. stat. sol. (b), 1976, 76, 475-485

Above the threshold, the material is conductor with connected clusters throughout its volume. However, as some isolated clusters remain in the material their size ξ , dielectric strength $\Delta\epsilon$ and τ decrease sharply according to the percolation theory. Thus, the relaxation frequency ν increases sharply (see Fig. 9d and 9e of the manuscript). These behaviors correspond to a sharp diminution of the size and the number of isolated clusters.