Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

SUPPORTING INFORMATION Fast Nosé-Hoover Thermostat: Molecular Dynamics in Quasi-thermodynamic Equilibrium

Dominik Sidler, Sereina Riniker*

[*] Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland Email: sriniker@ethz.ch

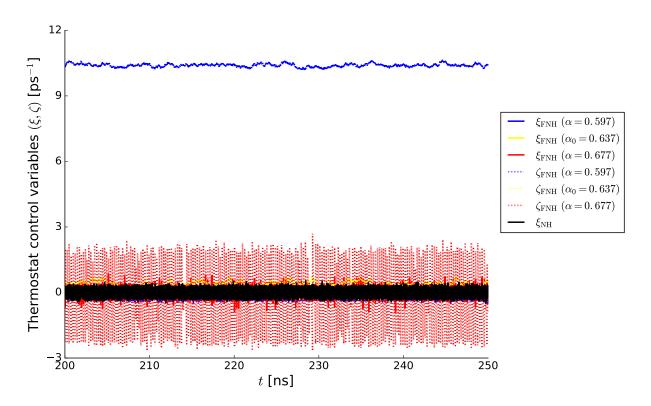


Figure S1: Time evolution of the thermostat control variables with respect to different Fast Nosé-Hoover (FNH) perturbations α for peptide 1 in methanol. On can clearly recognise that positive perturbations $\alpha=\alpha_0+\delta\alpha$ lead to negative $\zeta,$ which are balanced by positive ξ values, and $\emph{visa versa}$ for negative perturbations $\alpha=\alpha_0-\delta\alpha.$ For large positive deviations $\alpha=\alpha+\Delta\alpha=0.677$ in red, the oscillations of the thermostat variables are substantially increased involving repetitive sign changes. The Nosé-Hoover (NH) reference value for canonical equilibrium is shown in black.

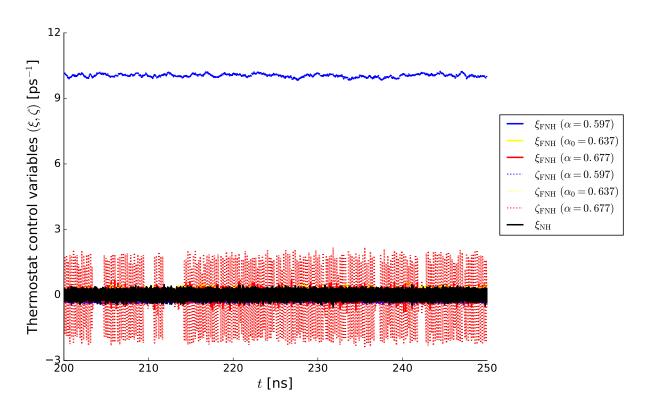


Figure S2: Time evolution of the thermostat control variables with respect to different Fast Nosé-Hoover (FNH) perturbations α for peptide 2 in methanol. On can clearly recognise that positive perturbations $\alpha = \alpha_0 + \delta \alpha$ lead to negative ζ , which are balanced by positive ξ values, and *visa versa* for negative perturbations $\alpha = \alpha_0 - \delta \alpha$. For large positive deviations $\alpha = \alpha + \Delta \alpha = 0.677$ in red, the oscillations of the thermostat variables are substantially increased also involving repetitive sign changes. However, in contrast to peptide 1 and the water test system, there exist some periods with reduced oscillatory amplitudes of ζ . The Nosé-Hoover (NH) reference value for canonical equilibrium is shown in black.