Journal Name

OYAL SOCIETY OF CHEMISTRY

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx

Supporting Information: Structural Studies of Spray Pyrolysis Synthesized Oxygen Deficient Anatase TiO₂ Thin Films by using X-ray Absorption Spectroscopy.[†]

Madhusmita Sahoo,*^{*a*} A.K.Yadav,*^{*b*} Subrata Ghosh,^{*a*} S.N Jha,^{*b*} and D. Bhattacharyya,^{*b*} Tom Mathews,^{*a*}

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxx

www.rsc.org/journalname

Crystallite size of the thin films were calculated using Scherrer formula. The co-ordination number for the particular crystallites were calculated using the following equation: 1

$$n_{nano} = [1 - \frac{3}{4} (\frac{r}{R}) + \frac{1}{16} (\frac{r}{R})^3] n_{bulk}$$
(1)

Table S1 represents the calculated co-ordination numbers considering the crystallite sizes of the films studied in the present manuscript. These nanometer sized crystallites ideally should have co-ordination number ~ 5.9. Hence, it can be concluded that the co-ordination number obtained (see Table 1 and 2 of the article) from the EXAFS analysis is due to oxygen deficiency obtained due to vacuum annealing. Presti *et al.* have calculated the cell parameters (a and c) and cell volume by using PAW, LCGTF and different potentials (Table S4 of Presti *et al.*²) The cell volume of ideal TiO₂ cell calculated by different methods were found out to be 144.3, 137.1, 138.2, 140.8 Å³ and oxygen deficient TiO₂ cell were found out to be 144.0, 136.0, 138.1, 140.0 Å³ by Presti *et al.*² We have obtained cell volume ~ 136.0 Å³ (see the last column of Table S1), which suggests the occurrence of oxygen vacancies in the cell.

1 Raman Studies of oxygen deficient TiO₂ thin films

The confirmation of anatase phase in pristine and annealed TiO_2 was studied by using Raman spectra. Raman spectra were recorded using 532 nm excitation with 50ÅUobjective lens (numerical aperture of 0.8), 1800 gr.mm⁻¹ grating as monochroma-

tor and thermo electric cooled charged coupled device (CCD) as detector in a in-Via, Renishaw Raman Spectrometer.

Fig. S1 Raman spectra of pristine and annealed anatase $\rm TiO_2$ synthesized at 450 $^\circ \rm C.$

Fig. S2 Raman spectra of pristine and annealed anatase $\rm TiO_2$ synthesized at 500 $^\circ \rm C.$

Figure S1 and S2 represents the Raman spectra of pristine and annealed TiO₂ synthesized at 450 $^{\circ}$ C and 500 $^{\circ}$ C. The peaks at

^a Surface and Nanoscience Division, Materials Science Group, IGCAR, HBNI, Kalpakkam, India. Fax: +91-44-27480081; Tel: +91-44-27480500 Extn:22171; Email: msahoo@igcar.gov.in, akyadav@barc.gov.in

^b Atomic and Molecular Physics Division, BARC, Mumbai, India.

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Table S1 Crystallographic parameters and calculated co-ordination number.

Sample id	Crystallite Size (in	Calculated Co-	Crystallographic	Volume(Å ³)
T:0 450 00 01	<u>1111)</u>			
TIO ₂ 450 °C-2n	29	5.94	a=3.7842(2)	105 0000(0)
			c = 9.4907(9)	135.9093(6)
TiO ₂ 450 °C-4h	57	5.96	a=3.7801(0)	
			c=9.5263(1)	136.1231(1)
TiO ₂ 450 °C-6h	42	5.95	a=3.7827(4)	
			c=9.4795(9)	135.6452(9)
TiO ₂ 450 °C-8h	30	5.94	a=3.7794(2)	
			c=9.4651(8)	135.0648(6)
TiO ₂ 500 °C-2h	55	5.96	a=3.7775(1)	
			c=9.4657(9)	135.0735(7)
${ m TiO}_2500\ ^\circ m C-4h$	26	5.93	a=3.7789(3)	
			c = 9.4670(0)	135.1922(7)
TiO_2500 °C-6h	91	5.98	a=3.7806(3)	
			c = 9.5077(4)	135.8959(6)
TiO ₂ 500 °C-8h	62	5 98	a=3.7809(7)	(0)
	.	0.70	c=9.5001(8)	135.8120(7)

144 cm⁻¹ (E_g), 394 cm⁻¹ (B₁g), 514 cm⁻¹ (A₁g) and 638 cm⁻¹ (E_g) peaks represent anatase TiO₂ phase. The presence of most prominent peak at 142.94 cm⁻¹ and less intense peak at 392.44 and 638.45cm⁻¹ confirms the anatase phase in TiO₂ nanostructures for both the cases. Since, Si used as substrate, the 514 cm⁻¹ (A₁g) is merged with Si peak.

2 Delineating the presence of carbon dopant

A representative XAS spectrum from the data studied in this manuscript was considered to delineate the presence of carbon dopant. Ti-C path from a cubic space group fm-3m was considered for generation of Ti-C scattering path and it is at 2.16 Å. The position of this Ti-C path is shown in figure S3 along with the two Ti-O paths of anatase TiO₂ structure. Since the position of Ti-C path is at the first coordination shell, the fitting is done along with Ti-O paths. If TiC phase is present in the sample, weighted average of both Ti-O paths and Ti-C paths should fit the first coordination peak. We have taken the contribution of Ti-O paths as x and Ti-C path as 1-x. The initial value of x is taken as 0.5 with assumption of 50% contribution from each structure. The fitting results shows that the obtained x value is 0.9996, which clearly shows zero contribution of Ti-C path in the first coordination shell. The fitting contribution of Ti-C path and Ti-O paths in the first coordination shell is given in figure S4 of the supplementary information. In addition, X-ray absorption spectroscopy is inherently enabled to delineate between substitutional and interstitial position of the dopant, since it allows the iteration of the bond length during the fitting process . Moreover, TiC crystallises only in cubic phase and the peak of TiC path generated from the available crystal structure is at the first co-ordination sphere. Hence, it can be concluded that there is no carbon dopant in the TiO₂ films.

Fig. S3 Ti-O and Ti-C paths along with the spectra of oxygen deficient ${\rm TiO_2}$ thin film in R-space .

Fig. S4 Extended region fitting of Ti-O and Ti-C paths with the spectra of oxygen deficient TiO_2 thin film in R-space .

3 XAS Full Spectra and Imaginary $\chi(R)$ vs R plots.

Fig. S5 X-ray absorption experimental curves for the oxygen deficient ${\rm TiO}_2$ anatase films.

Fig. S7 Imaginary $\chi(R)$ vs R plots for the films synthesized and annealed at 500°C.

3.1 Correlation of peak height and peak position.

Fig. S8 Plot of normalized height vs energy of the Ti pre-edge feature(A_2 peak) $% \left(A_{1}^{2}\right) =0$

A comparison of the above figure with the Figure 6 of ref³ reveals that the samples considered in the present study contains both 5 and 6 co-ordinated Ti species.

Notes and references

- 1 A. I. Frenkel, A. Yevick, C. Cooper and R. Vasic, *Annual Review* of *Analytical Chemistry*, 2011, 4, 23–39.
- 2 L. Lo Presti, M. Ceotto, F. Spadavecchia, G. Cappelletti, D. Meroni, R. G. Acres and S. Ardizzone, *The Journal of Physical Chemistry C*, 2014, **118**, 4797–4807.
- 3 F. Farges, G. E. Brown, J. Rehr et al., *Physical Review B*, 1997, **56**, 1809.

Fig. S6 Imaginary $\chi(R)$ vs R plots for the films synthesized and annealed at 450°C.