Supplementary Information

Fast Beam Photofragment Translational Spectroscopy of the Phenoxy Radical at 225 nm, 290 nm, and 533 nm

Erin N Sullivan, Bethan Nichols,^{a)} and Daniel M. Neumark^{b)}

Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Table of Contents:

Table S1: Anion Photoelectron Spectrum Peak Assignments

Figure S1: Two- and three-body mass distributions for dissociation at 193 nm

Figure S2: Translational energy distribution of dissociation to channel 1 at 193 nm

Figure S3: Experimental and simulated mass distributions for dissociation at 533 nm

Table S2: RRKM Rate Constants

^{a)}Present address: Thumbtack, San Francisco, CA 94103

^{b)}Corresponding author. Email: <u>dneumark@berkeley.edu</u>

Figure S1: Two- and three-body mass distributions for C₆H₅O dissociation at 193 nm

Figure S2: Translational energy distribution of C_6H_5O photodissociation to channel 1(CO + C_5H_5) at 193 nm

Figure S3: Comparison of experimental and simulated three-body mass (a) and translational energy distributions (b) of C_6H_5O at 533 nm. The simulations use the translational energy distribution of channel 1 formation with some probability of accepting a third fragment.

Table S2: RRKM Rate Constants (s ⁻¹)			
Available Energy (<i>hv-D</i> ₀) ^{a)}	C ₆ H ₅ O → CO + C ₅ H ₅ (channel 1)	C5H5 → C2H2 + C3H3 (channel 4) ^{b)}	C ₅ H ₅ → H + C ₅ H ₄ (channel 5) ^{b)}
532 nm (2.33 eV/ 1.29 eV)	1.5	N/A	N/A
290 nm (4.27 eV/ 3.23 eV)	2.8 x 10 ⁷	N/A	N/A
225 nm (5.51 eV/ 4.47 eV)	6.0 x 10 ⁸	3.2 x 10 ⁶	4.3 x 10 ³
225 nm – <i>E</i> _T (1.0 eV) (4.51 eV/ 3.47 eV)	N/A	N/A	N/A
532 nm + 533 nm (4.66 eV/ 3.62 eV)	8.9 x 10 ⁷	N/A	N/A
532 nm + 290 nm (6.60 eV/5.56 eV)	3.3 x 10 ⁹	1.8 x 10 ⁸	3.7 x 10 ⁷
532 nm + 225 nm (7.84 eV/ 6.80 eV)	$1.3 \ge 10^{10}$	1.4 x 10 ⁹	1.1 x 10 ⁹

⁽¹⁾ (*i*) D_0 refers to 0 eV for channel 1 formation and 1.04 eV for channels 4 and 5. Values in the parentheses next to each wavelength present the available energy in the following format (*hv*-0 eV/*hv*-1.04 eV

^{b)}The energy required for secondary dissociation of C_5H_5 to channels 4 and 5 is 3.25 eV and 3.92 eV, respectively. The minimum energy required to traverse all barriers to yield channel 4 is 3.65 eV.²

References:

- 1. J. B. Kim, T. I. Yacovitch, C. Hock and D. M. Neumark, *Phys. Chem. Chem. Phys.* **13**, 17378-17383 (2011).
- 2. M. Shapero, I. A. Ramphal and D. M. Neumark, J. Phys. Chem. A 122, 4265-4272 (2018).