Supplementary Information for:

Understanding CO oxidation on the Pt(111) surface based on reaction route network

Kanami Sugiyama,^a Yosuke Sumiya,^b Makito Takagi,^a Kenichiro Saita,^{b,*} and Satoshi Maeda^{b,c,d,*}

^aGraduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan.

^bDepartment of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.

^cInstitute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.

^dResearch and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.

*Authors to whom correspondence should be addressed. E-mail: ksaita@sci.hokudai.ac.jp (KS); smaeda@eis.hokudai.ac.jp (SM).

Contents:

- **S1.** Effect of the number of layers and adsorption induced surface relaxation
- **S2.** Adsorption energies and adsorption sites of CO, O_2 , and O atom on the Pt(111) surface

S1. Effects of the number of layers and adsorption-induced surface relaxation

The energies for four kinds of adsorbates were computed by using different slab models, frozen two-layered slab (a), frozen three-layered slab (b), and a thawed layer over frozen two-layered slab model (c). Table S1 shows the relative electronic energies to the total energy of CO(g), $O_2(g)$, and the "clean" slab. The effect of introduction of the third layer is small. The adsorption-induced surface relaxation was observed in our calculation around O atom adsorbed in the fcc hollow site, however, the relaxation of the first layer does not affect largely on energy except $CO_2(g)+O$ (MIN0). Such stabilization of $CO_2(g)+O$ (product) structures does not affect our kinetic analysis, so that we adopted the frozen two-layered slab model in this study.

Table S1. Electronic energies of the most stable structure of each adsorption state, $CO+O_2$ (MIN114), CO+2O (MIN83), OC-OO (MIN131), and $CO_2(g)+O$ (MIN0), relative to that of $CO(g)+O_2(g)$. (a) frozen two-layered slab model, (b) frozen three-layered slab model, (c) a thawed layer over frozen two-layered slab model.

	$\Delta E [\mathrm{kJ}\mathrm{mol}^{-1}]$		
	(a)	(b)	(c)
CO+O ₂ (MIN114)	-288.1	-275.7	-291.7
CO+2O (MIN83)	-389.1	-379.1	-378.2
OC-OO (MIN131)	-242.0	-240.7	-248.0
$CO_2(g)+O$ (MIN0)	-426.9	-426.3	-445.7

S2. Adsorption energies and adsorption sites of CO, O₂, and O atom on the Pt(111) surface

The adsorption free energy (ΔG_{ads}) was calculated as the difference between the Gibbs energy of the molecule adsorbed on the Pt slab ($G_{mol+slab}$) and the sum of the Gibbs energies of the molecule in the gas phase (G_{mol}) and the "clean" slab (G_{slab}):

$$\Delta G_{ads} = G_{mol + slab} - (G_{mol} + G_{slab})$$

The Pt slab was kept frozen throughout this study, then G_{slab} is identical to the potential (electronic) energy (E_{slab}). Calculated adsorption energies at 300 K for CO, O₂, and O atom were listed in Table S2(a)-(c). For CO adsorption, the fcc hollow site gives the largest adsorption energy, but a number of experimental results suggest the atop site is the most favorable adsorption site for CO molecule.^{1–5} This problem is known as CO puzzle, and only meta-GGA or hybrid functional can reproduce the experimental trend.^{4,5} However, the all of $CO(fcc)+O_2$, $CO(hcp)+O_2$, and $CO(atop)+O_2$ adsorption states are contracted into the same superstate in our RCMC kinetic analyses (see Figures 2 and 4), because CO migration paths occur in a much shorter timescale than bond rearrangement processes between CO and O₂. Therefore, we do not distinguish the adsorption sites for our purpose in this study. In case of O₂ molecular adsorption, the top-bridge-top (t-b-t) configuration is most preferable which is consistent with previous studies,^{6,7} and the chemisorption makes superoxide state (O₂⁻) of oxygen. The fcc hollow site is most preferable in the case for O atomic adsorption. Our calculated adsorption energies might be comparable with the experimental values.⁸ The adsorption energy depends on the coverage of adsorbate, especially at the low coverage range. Our computational model corresponds to the coverage of 1/16 ML (0.0625 ML),⁹ and we listed the adsorption heats ($\Delta H_{ads,exp}$) from the experimental data in Ref. 8 in Table S2. It is known that O_2 molecule on the Pt(111) easily dissociate in the low coverage range (< 0.5 ML) even at low temperature, $^{6,7,10-13}$ so that we added the adsorption heat for O_2 molecular adsorption,

which was determined in the high coverage limit at 100K,¹⁰ in Table S2.

Table S2. Adsorption free energies (ΔG_{ads}), enthalpies (ΔH_{ads}), and entropies (ΔS_{ads}) for CO, O₂, and O on the Pt(111) surface at 300 K, at 1/16 ML coverage.

(a) CO	atop	fcc	hcp
$\Delta G_{\rm ads} [{ m kJ} { m mol}^{-1}]$	-133.3	-158.6	-151.3
$\Delta H_{ m ads}$ [kJ mol ⁻¹]	-180.3	-206.2	-200.0
$\Delta S_{ m ads} [m J mol^{-1} K^{-1}]$	-156.6	-158.6	-162.6
$\Delta H_{\rm ads,exp} [\rm kJ \; mol^{-1}]^8$		-175	
(b) O ₂	t-b-t	t-f-b	t-h-b
$\Delta G_{ m ads} [m kJ mol^{-1}]$	-23.0	-15.2	-10.8
$\Delta H_{\rm ads} [{\rm kJ} \; {\rm mol}^{-1}]$	-71.3	-62.0	-57.5
$\Delta S_{\mathrm{ads}} [\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}]$	-161.0	-155.8	-156.0
$\Delta H_{\mathrm{ads,exp}} [\mathrm{kJ} \mathrm{mol}^{-1}]^{10}$	(-38)†		
(c) O atom	atop	fcc	hcp
$\Delta G_{ m ads} [m kJ mol^{-1}]$	-220.6	-317.6	-290.8
$\Delta H_{\rm ads} [{ m kJ} { m mol}^{-1}]$	-254.7	-355.5	-328.7
$\Delta S_{ m ads} [{ m J} { m mol}^{-1} { m K}^{-1}]$	-115.5	-128.1	-128.1
$\Delta H_{\rm ads,exp} [\rm kJ \; mol^{-1}]^8$		-250	

[†] Experimental data in the high coverage limit at 100K, and the heat of compression (*RT* term) added to the experimentally measured differential heat of adsorption from thermal desorption spectra (TDS).

References and Notes

- H. Froitzheim, H. Hopster, H. Ibach and S. Lehwald, Adsorption Sites of CO on Pt(111), *Appl. Phys.*, 1977, 13, 147–151.
- G. Ertl, M. Newmann and K. M. Streit, Chemisorption of CO on the Pt(111) Surface, *Surf. Sci.*, 1977, 64, 393–410.
- 3. P. J. Feibelman, B. Hammer, J. K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe and J. Dumesic, The CO/Pt(111) Puzzle, *J. Phys. Chem. B*, 2001, **105**, 4018–4025.
- Y. Wang, S. de Gironcoli, N. S. Hush and J. R. Reimers, Successful a Priori Modeling of CO Adsorption on Pt(111) Using Periodic Hybrid Density Functional Theory, *J. Am. Chem. Soc.*, 2007, **129**, 10402–10407.
- 5. P. Janthon, F. Viñes, J. Sirijaraensre, J. Limtrakl and F. Illas, Adding Pieces to the CO/Pt(111) Puzzle: The Role of Dispersion, *J. Phys. Chem. C*, 2017, **121**, 3970–3977.
- A. Eichler and J. Hafner, Molecular Precursors in the Dissociative Adsorption of O₂ on Pt(111), *Phys. Rev. Lett.*, 1997, **79**, 4481–4484.
- A. Eichler, F. Mittendorfer and J. Hafner, Precursor-Mediated Adsorption of Oxygen on the (111) Surfaces of Platinum-Group Metals, *Phys. Rev. B*, 2000, 62, 4744–4755.
- Y. Y. Yeo, L. Vattuone and D. A. King, Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}, *J. Chem. Phys.*, 1997, 106, 392– 401.
- 9. A $c(4\times4)$ unit cell, we used in this study, has 16 atop, fcc hollow, or hcp hollow adsorption sites.
- J. L. Gland, B. A. Sexton and G. B. Fisher, Oxygen interactions with the Pt(111) surface, *Surf. Sci.*, 1980, **95**, 587–602.
- H. Steininger, S. Lehwald and H. Ibach, Adsorption of Oxygen on Pt(111), Surf. Sci., 1982, 123, 1–17.

- A. Groß, A. Eichler, J. Hafner, M. J. Mehl and D. A. Papaconstantopoulos, Unfied Picture of the Molecular Adsorption Process: O₂/Pt(111), *Surf. Sci.*, 2003, **539**, L542–L548.
- B. Shan, N. Kapur, J. Hyn, L. Wang, J. B. Nicholas and K. Cho, CO-Coverage-Dependent Oxygen Dissociation on Pt(111) Surface, *J. Phys. Chem. C*, 2009, **113**, 710–715.