Supporting Information for

Non-Covalent Complexes of the Peptide Fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the Gas-Phase. Photodissociative Cross-Linking, Born-Oppenheimer Molecular Dynamics, and Ab Initio Computational Binding Study

Shu R. Huang, Yang Liu, František Tureček* Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, USA

Manuscript submitted to Phys. Chem. Chem. Phys., November 2018.

Table of Contents:

Supplementary Tables S1-S9. Supplementary Figures S1-S12.

Table S1. UVPD-CID-MS³ spectrum of the $(*GNNQQNY_{NH2} - N_2 + GNNQQNY_{NH2} + H)^+$ complex *I* (*m*/*z* 1739)

Fragment Ion (m/z)	Assignment ^b	Rel. Intensity ^a
1722	(1739-NH ₃)	0.4
1160	y ₄ B ₅	0.1
1032	y_4B_4 / y_3B_5	0.8
1018	$y_6B_2 / y_5B_3 / y_2B_6$	0.3
961	$\boldsymbol{m} \mathbf{B}_1 / \boldsymbol{b}_I \mathbf{M}$	0.7
904	$[M+H]^+$	75.9
887	$[M-NH_3+H]^+$	7.9
870	$[M-2NH_3+H]^+$	2.2
836	$[m+H]^+$	2.0
819	$[m-NH_3+H]^+$	0.3
790	$y_1B_5 / y_4B_2 / y_5B_1$	0.1
724	B_6	1.7
707	B_6-NH_3	0.9
662	$y_1 B_4 / y_3 B_2$	0.1
648	y_2B_3	0.2
610	B ₅	0.9
593	B ₅ -NH ₃	0.3

^{*a*}Relative to the sum of fragment ion intensities.

^bFragment ions indicative of crosslinking in GNNQQNY_{NH2} are highlighted.

Fragment Ion (m/z)	Assignment ^{<i>v</i>}	
1724	(1741-NH ₃)	3.1
1707	(1741-2NH ₃)	0.8
1570	<i>y</i> ₅ M	0.2
1560	m B ₆ / b ₆ M	0.5
1553	y_5 M-NH ₃	0.1
1543	mB_6/b_6M-NH_3	0.2
1456	<i>y</i> ₄ M	0.1
1446	m B ₅ / b ₅ M	0.3
1439	y ₄ M-NH ₃	0.1
1429	m B ₅ / b ₅ M-NH ₃	0.1
1328	y ₃ M	0.1
1318	m B ₄ / b ₄ M	0.2
1311	y_3 M-NH ₃	0.2
1301	m B ₄ / b ₄ M-NH ₃	0.1
1200	y_2M	0.3
1190	m B ₃ / b ₃ M	0.1
1183	y_2 M-NH ₃	0.2
1173	m B ₃ / b ₃ M-NH ₃	0.1
1086	y_1 M	0.2
1076	$m B_2 / b_2 M$	0.2
1069	y_1 M-NH ₃	0.1
1059	mB_2/b_2M -NH ₃	0.1
1019	$y_6B_2 / y_5B_3 / y_2B_6$	0.1
962	$\boldsymbol{m} \mathbf{B}_1 / \boldsymbol{b_I} \mathbf{M}$	0.5
905	$[M+H]^+$	81.1
888	$[M-NH_3+H]^+$	3.2
871	$[M-2NH_3+H]^+$	0.6
837	$[m+H]^+$	1.7
820	$[m-NH_3+H]^+$	0.1
791	$\mathbf{y}_{5}\mathbf{B}_{1}$ / $\mathbf{y}_{4}\mathbf{B}_{2}$ / $\mathbf{y}_{1}\mathbf{B}_{5}$	0.1
777	$y_{3}B_{3} / y_{2}B_{4}$	0.1
724	B_6	1.5
707	B_6 - NH_3	0.7
690	B_6 -2NH ₃	0.3
649	$\mathbf{y}_{2}\mathbf{B}_{3}$	0.1
639	b ₃ B ₃	0.1
610	B_5	1.2
593	B_5-NH_3	0.4

Table S2. UVPD-CID-MS³ spectrum of the $(*GNNQQNY_{OH} - N_2 + GNNQQNY_{OH} + H)^+$ complex *II* (*m*/*z* 1741) h F

^{*a*}Relative to the sum of fragment ion intensities. ^{*b*}Fragment ions indicative of crosslinking in GNNQQNY_{OH} are highlighted.

Fragment Ion (m/z)	Assignment	Rel. Intensity ^a
1723	(1740-NH ₃)	0.4
961	mB_1	0.8
905	$[M+H]^+$	87.2
888	$[M-NH_3+H]^+$	3.2
871	$[M-2NH_3+H]^+$	0.6
836	$[m+H]^+$	2.5
819	$[m-NH_3+H]^+$	0.3
802	$[m-2NH_3+H]^+$	0.6
724	B_6	1.6
707	B ₆ -NH ₃	0.7
690	B_6-2NH_3	0.3
610	B_5	1.2
593	B ₅ -NH ₃	0.4

Table S3. UVPD-CID-MS³ spectrum of the (*GNNQQNY_{OH} – N₂ + GNNQQNY_{NH2} + H)⁺ complex *III* (m/z 1740)

^{*a*}Relative to the sum of fragment ion intensities.

Fragment Ion (m/z)	Assignment ^b	Rel. Intensity ^a
1723	(1740-NH ₃)	5.0
1706	(1740-2NH ₃)	0.1
1689	(1740-3NH ₃)	0.4
1569	<i>y</i> ₅ M	0.2
1560	mB_6	0.4
1552	y_5 M-NH ₃	0.1
1543	mB_6-NH_3	0.2
1455	<i>y</i> ₄ M	0.1
1446	mB_5	0.4
1438	<i>y</i> ₄ M-NH ₃	0.1
1429	mB_5-NH_3	0.1
1412	mB_5-2NH_3	0.1
1327	y ₃ M	0.1
1318	mB_4	0.3
1310	y ₃ M-NH ₃	0.2
1301	mB_4 -NH ₃	0.1
1293	y ₃ M-2NH ₃	0.1
1284	mB_4 -2NH ₃	0.1
1199	y_2M	0.3
1190	mB_3	0.2
1182	y_2 M-NH ₃	0.3
1173	mB_3 -NH ₃	0.1
1085	<i>y1</i> M	0.2
1076	mB_2	0.3
1067	y_I M-H ₂ O	0.3
962	mB_1	0.3
904	$[M+H]^+$	72.3
887	$[M-NH_3+H]^+$	7.2
870	$[M-2NH_3+H]^+$	2.4
853	$[M-3NH_3+H]^+$	0.9
837	$[m+H]^{+}$	1.2
820	$[\boldsymbol{m}-\mathrm{NH}_3+\mathrm{H}]^+$	0.1
724	B_6	1.7
707	B_6 - NH_3	0.9
690	B_6 -2NH ₃	0.3
610	B_5	0.9
593	B_5-NH_3	0.4

Table S4. UVPD-CID-MS³ spectrum of the $(*GNNQQNY_{NH2} - N_2 + GNNQQNY_{OH} + H)^+$ complex *IV* (*m*/*z* 1740)

^{*a*}Relative to the sum of fragment ion intensities. ^{*b*}Fragment ions indicative of crosslinking in GNNQQNY_{OH} are highlighted.

	b_1	b_2	\dot{b}_3	b_4	b 5	b ₆	\tilde{b}_7	$\boldsymbol{b_8}$
	98.1	169.1	226.1	283.1	446.2	609.3	737.3	851.4
B ₁	$\boldsymbol{b}_{\boldsymbol{I}} \mathbf{B}_1$	$\boldsymbol{b}_2 \mathbf{B}_1$	$\boldsymbol{b}_{\boldsymbol{3}}\mathbf{B}_{1}$	$\boldsymbol{b_4} \mathbf{B}_1$	$\boldsymbol{b}_{5}\mathrm{B}_{1}$	b ₆ B ₁	$\boldsymbol{b}_7 \mathbf{B}_1$	$\boldsymbol{b_8}\mathrm{B}_1$
126.1	223.1	294.2	351.2	408.2	571.3	734.4	862.4	976.5
B_2	$\boldsymbol{b_1}\mathbf{B}_2$	$\boldsymbol{b}_2 \mathbf{B}_2$	$\boldsymbol{b}_{\boldsymbol{3}}\mathbf{B}_2$	$\boldsymbol{b_4}\mathbf{B}_2$	$\boldsymbol{b}_{\boldsymbol{5}}\mathbf{B}_2$	b ₆ B ₂	$\boldsymbol{b}_7 \mathbf{B}_2$	$\boldsymbol{b_8}\mathbf{B}_2$
240.1	337.2	408.2	465.2	522.3	685.3	848.4	976.4	1090.5
B_3	b ₁ B ₃	$\boldsymbol{b_2}\mathbf{B}_3$	b ₃ B ₃	b_4B_3	b ₅ B ₃	b ₆ B ₃	b ₇ B ₃	$\boldsymbol{b_8}\mathrm{B}_3$
354.2	451.2	522.3	579.3	636.3	799.4	962.4	1090.5	1204.5
B_4	$\boldsymbol{b_1}\mathrm{B}_4$	$\boldsymbol{b_2}\mathrm{B}_4$	$\boldsymbol{b_3}\mathrm{B}_4$	$\boldsymbol{b_4}\mathrm{B}_4$	b_5B_4	$\boldsymbol{b_6}\mathrm{B}_4$	$\boldsymbol{b}_7\mathrm{B}_4$	$\boldsymbol{b_8}\mathrm{B}_4$
482.2	579.3	650.3	707.3	764.4	927.4	1090.5	1218.6	1332.6
B_5	$\boldsymbol{b}_1 \mathbf{B}_5$	b_2B_5	b_3B_5	b_4B_5	b 5B5	b ₆ B ₅	$\boldsymbol{b}_7 \mathrm{B}_5$	$\boldsymbol{b_8}\mathrm{B}_5$
610.3	707.3	778.4	835.4	892.4	1055.5	1218.6	1346.6	1460.7
B_6	$\boldsymbol{b_1}\mathrm{B}_6$	$\boldsymbol{b}_2 \mathbf{B}_6$	$\boldsymbol{b_3}\mathrm{B}_6$	$b_4 B_6$	b_5B_6	b ₆ B ₆	$\boldsymbol{b}_7 \mathbf{B}_6$	$\boldsymbol{b_8}\mathrm{B}_6$
724.3	821.4	892.4	949.4	1006.5	1169.5	1332.6	1460.7	1574.7
Μ	<i>b</i> ₁ M	b_2 M	<i>b</i> ₃ M	<i>b</i> ₄ M	b_5 M	<i>b</i> ₆ M	b 7M	b_8 M
904.4	1001.5	1072.5	1129.5	1186.6	1349.6	1512.7	1640.7	1754.8
	1							
	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> 6	y 7	<i>y</i> 8
	181.1	295.1	423.2	586.3	/49.3	806.3	863.4	934.4
B_1	y_1B_1	$\mathbf{y}_2\mathbf{B}_1$	y_3B_1	y_4B_1	y_5B_1	y ₆ B ₁	$\mathbf{y}_7\mathbf{B}_1$	y_8B_1
126.1	306.2	420.2	548.3	711.3	874.4	931.4	988.5	1059.5
B_2	$\mathbf{y}_{I}\mathbf{B}_{2}$	y_2B_2	y_3B_2	y_4B_2	y_5B_2	y ₆ B ₂	y_7B_2	y_8B_2
240.1	420.2	534.3	662.3 D	825.4	988.5	1045.5	1102.5	1173.5
B ₃	$\mathbf{y}_{I}\mathbf{B}_{3}$	y_2B_3	y ₃ B ₃	y_4B_3	y_5B_3	y ₆ B ₃	y_7B_3	y ₈ B ₃
354.2 D	534.3	648.3	7/6.4	939.4 D	1102.5	1159.5	1216.5	1287.6
\mathbf{B}_4	$y_1 B_4$	y_2B_4	$\mathbf{y}_3\mathbf{B}_4$	y_4B_4	y_5B_4	y_6B_4	y_7B_4	y_8B_4
482.2 D	662.3	//6.4	904.4 D	1067.4 D	1230.6	1287.6	1344.6 D	1415.0 D
B_5	y_1B_5	y_2B_5	y ₃ B ₅	y ₄ B ₅	y ₅ B ₅	y ₆ B ₅	y_7B_5	y ₈ B ₅
610.3 D	/90.4	904.4	1032.5	1195.5 D	1338.6	1415.6	14/2./	1545./
B_6	y_1B_6	y_2B_6	$y_{3}B_{6}$	y_4B_6	y_5B_6	y_6B_6	y_7B_6	y ₈ B ₆
124.3 N	904.4	1018.5	1140.3	1309.0	14/2./	1529.7	1380./	103/./
IVI	N/	N/I	N/I	N/I	1 1	1 1	1/	N/I
004.4	$y_I M$	y_2M	<i>y</i> ₃ M	<i>y</i> ₄ M	y_5M	<i>y</i> ₆ M	y_7M	y_8M

Table S5. Table of logical combinations of B-ions from the photo-labeled monomer *GNNQQNY_{NH2} and the *b*- and *y*-ions from the PAGGYYQNY_{NH2} target monomer.

Fragment Ion (m/z)	Assignment ^b	Rel. Intensity
1918	(1934-NH ₃)	0.9
1901	(1934-2NH ₃)	0.4
1514		0.3
1480		0.3
1098		2.1
1053		1.9
1031	$[n+H]^+$	53.9
1014	$[\mathbf{n}$ -NH ₃ +H] ⁺	2.0
972		5.8
904	$[M+H]^+$	25.3
887	$[M-NH_3+H]^+$	2.8
870	$[M-2NH_3+H]^+$	0.7
851	$\boldsymbol{b_8}$	0.5
834	b_8 - NH_3	0.8
737	\boldsymbol{b}_7	0.7
724	B_6	0.6
707	B ₆ -NH ₃	0.3
610	B_5	0.3
609	b_6	0.2

Table S6. UVPD-CID-MS³ spectrum of the $(*GNNQQNY_{NH2} - N_2 + PAGGYYQNY_{NH2} + H)^+$ complex (*m*/*z* 1934). a

^{*a*}Relative to the sum of fragment ion intensities. ^{*b*}Ions that were not able to be logically assigned are denoted "--"

	b_1	b_2	b_3	<i>b</i> ₄	b_5	b_6	b_7	b_8
D	98.1	220.1	285.1	540.2	303.2	031.3	/39.5	922.4
B_1	<i>b</i> ₁ B ₁	b ₂ B ₁	b ₃ B ₁	b ₄ B ₁	b_5B_1	b ₆ B ₁	b ₇ B ₁	b ₈ B ₁
126.1 D	223.1	351.2	408.2	465.2	628.3	/56.4	884.4	1047.5
B_2	$b_1 B_2$	D ₂ B ₂	<i>b</i> ₃ B ₂	<i>D</i> ₄ B ₂	D ₅ B ₂	0 6В2	D ₇ B ₂	D ₈ B ₂
240.1 D	337.2	465.2	522.3	5/9.3	/42.4	8/0.4	998.S	1101.5
B_3	<i>D</i> ₁ B ₃	0 2В3	D ₃ B ₃	<i>b</i> ₄ B ₃	D ₅ B ₃	D ₆ B ₃	D 7B3	D ₈ B ₃
354.2 D	451.2	5/9.3	636.3	693.3	856.4	984.5	1112.5	12/5.6
\mathbf{B}_4	<i>b</i> ₁ B ₄	$\boldsymbol{b}_2 \mathbf{B}_4$	b ₃ B ₄	b ₄ B ₄	b ₅ B ₄	<i>b</i> ₆ В ₄	b ₇ B ₄	b ₈ B ₄
482.2	579.3	707.3	764.4	821.4	984.5	1112.5	1240.6	1403.6
B ₅	$\boldsymbol{b}_1 \mathbf{B}_5$	b_2B_5	b ₃ B ₅	b_4B_5	b ₅ B ₅	b ₆ B ₅	b ₇ B ₅	b ₈ B ₅
610.3	707.3	835.4	892.4	949.4	1112.5	1240.6	1368.6	1531.7
B ₆	$b_1 B_6$	$\boldsymbol{b}_2 \mathbf{B}_6$	b_3B_6	b_4B_6	b_5B_6	b ₆ B ₆	b ₇ B ₆	$\boldsymbol{b_8}B_6$
724.3	821.4	949.4	1006.5	1063.5	1226.6	1354.6	1482.7	1645.7
М	<i>b</i> ₁ M	b_2 M	<i>b</i> ₃ M	<i>b</i> ₄ M	<i>b</i> ₅ M	<i>b</i> ₆ M	b 7M	<i>b</i> ₈ M
904.4	1001.5	1129.5	1186.6	1243.6	1406.6	1534.7	1662.8	1825.8
	1							
	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇	<i>y</i> 8
_	132.1	295.1	423.2	551.3	/14.3	771.3	828.4	956.4
B_1	$y_I B_1$	$\mathbf{y}_2\mathbf{B}_1$	$\mathbf{y}_{3}\mathbf{B}_{1}$	y_4B_1	y_5B_1	y ₆ B ₁	$\mathbf{y}_7\mathbf{B}_1$	$\mathbf{y}_{8}\mathbf{B}_{1}$
126.1	257.2	420.2	548.3	676.3	839.4	896.4	953.4	1081.5
B ₂	y_1B_2	y ₂ B ₂	y_3B_2	y_4B_2	y_5B_2	y ₆ B ₂	y_7B_2	$\mathbf{y}_{8}\mathbf{B}_{2}$
240.1	371.2	534.3	662.3	790.4	953.4	1010.5	1067.5	1195.5
B ₃	$\mathbf{y}_{\mathbf{I}}\mathbf{B}_{3}$	y_2B_3	y ₃ B ₃	y_4B_3	y_5B_3	y ₆ B ₃	y_7B_3	y ₈ B ₃
354.2	485.2	648.3	776.4	904.4	1067.5	1124.5	1181.5	1309.6
B_4	$\mathbf{y}_{\mathbf{I}}\mathbf{B}_{4}$	y_2B_4	$\mathbf{y}_{3}\mathbf{B}_{4}$	$\mathbf{y}_{4}\mathbf{B}_{4}$	y_5B_4	$\mathbf{y_6}\mathbf{B}_4$	y_7B_4	$\mathbf{y}_{8}\mathbf{B}_{4}$
482.2	613.3	776.4	904.4	1032.4	1195.5	1252.6	1309.6	1437.7
B_5	$\mathbf{y}_{\mathbf{I}}\mathbf{B}_{5}$	y_2B_5	y_3B_5	y_4B_5	y_5B_5	y_6B_5	y_7B_5	$\mathbf{y}_{8}\mathbf{B}_{5}$
610.3	741.4	904.4	1032.5	1160.5	1323.6	1380.6	1437.7	1565.7
B_6	$y_1 B_6$	y_2B_6	y_3B_6	y_4B_6	y_5B_6	y_6B_6	$\mathbf{y}_7 \mathbf{B}_6$	y_8B_6
724.3	855.4	1018.5	1146.5	1274.6	1437.7	1494.7	1551.7	1679.8
М	<i>y</i> ₁ M	y_2M	y ₃ M	<i>y</i> ₄ M	y_5M	y ₆ M	<i>y</i> ₇ M	y_8 M
904.4	1035.5	1198.6	1326.6	1454.7	1617.7	1674.8	1731.8	1859.8

Table S7. Table of logical combinations of B-ions from the photo-labeled monomer *GNNQQNY-NH₂ and the *b*- and *y*-ions from the PQGGYQQYN_{NH2} target monomer.

Fragment Ion (m/z)	Assignment ^b	Rel. Intensity
1939	(1956-NH ₃)	1.0
1922	(1956-2NH ₃)	0.2
1899		0.7
1503		0.2
1439		0.4
1053	$[p+H]^+$	72.1
1036	$[p-NH_3+H]^+$	2.0
994		3.2
926	$[M+Na]^+$	7.9
904	$[M+H]^+$	8.5
887	$[M-NH_3+H]^+$	1.0
870	$[M-2NH_3+H]^+$	0.3
828	y 7	0.4
759	b ₇	0.4
742	B_6	0.2
631	b_6	0.3
614	<i>b</i> ₆ -NH ₃	0.1
610	B_5	0.1

Table S8. UVPD-CID-MS³ spectrum of the $(*GNNQQNY_{NH2} - N_2 + PQGGYQQYN_{NH2} + H)^+$ complex (*m*/*z* 1956). ,a

^{*a*}Relative to the sum of fragment ion intensities. ^bIons that were not able to be logically assigned are denoted "--"

	Relative Energy ^{a} (kJ mol ⁻¹)				
Complex	B3LYP/	ωB97XD/6-31+G(d,p)			
	6-31G(d,p)				
1	$0~(0.0)^{b}$	0 (0.0)	0^c	0^c	
2	15 (2.3)	40 (27)	28^{c} (15)	27^{d} (14)	
3	53 (29)	76 (52)	50^{e} (26)	$49^{f}(25)$	
4	103 (78)	95 (70)	58 ^e (33)	$58^{f}(33)$	
5	98 (84)	104 (90)	97 ^e (83)	96 ^f (82)	
6	49 (17)	124 (92)	92^{e} (59)	91 ^{<i>f</i>} (59)	
7	108 (77)	121 (93)	101^{e} (72)	$100^{f}(71)$	
8	51 (16)	147 (113)	81 ^e (47)	$83^{f}(49)$	
9	84 (66)	138 (120)	129^{e} (111)	$128^{f}(110)$	
$1N_2 \rightarrow 10 + 11$	90	262 (170)	103^{g} (12)		
		218 ^g (126)			

Table S9. Relative Energies of $(GNNQQNY_{NH2} + *GNNQQNY_{NH2} + H)^+$ Ion Complexes.

^aIncluding zero-point vibrational energies and referring to 0 K.

^bValues in parentheses are the relative free energies at 310 K.

^cIncluding solvation energies for fully optimized structures in the water polarizable dielectric . ^dIncluding solvation energies for fully optimized structures in the methanol polarizable dielectric.

^{*e*}Including solvation energies in the water polarizable dielectric for gas-phase structures.

^{*f*}Including solvation energies in the methanol polarizable dielectric for gas-phase structures.

^{*s*}Including counterpoise energy corrections of the basis set superposition error.

Figure S1. CID-MS² of $(*GNNQQNY_{NH2} + GNNQQNY_{NH2} + H)^+$ ion dimer complex.

Figure S2. CID-MS² of $[*GNNQQNY_{OH} + GNNQQNY_{OH} + H]^+$ ion dimer complex.

Figure S3. CID-MS² of $[*GNNQQNY_{OH} + GNNQQNY_{NH2} + H]^+$ ion dimer complex.

Figure S4. CID-MS² of $[*GNNQQNY_{NH2} + GNNQQNY_{OH} + H]^+$ ion dimer complex.

Figure S5. UVPD-MS2 of (a) complex *II*, (GNNQQNY_{OH} + *GNNQQNY_{OH} + H)⁺, *m*/*z* 1769; (b) complex *III*, (GNNQQNY_{NH2} + *GNNQQNY_{OH} + H)⁺, *m*/*z* 1768; (c) complex *IV*, (GNNQQNY_{OH} + *GNNQQNY_{NH2} + H)⁺, *m*/*z* 1768.

Figure S6. CID-MS² of $[*GNNQQNY_{NH2} + PAGGYYQNY_{NH2} + H]^+$ ion dimer complex.

Figure S7. CID-MS² of $[*GNNQQNY_{NH2} + PQGGYQQYN_{NH2} + H]^+$ ion dimer complex.

Figure S8. CID-MS³ of photoproduct ions (a) $(nM-N_2+H)^+$, m/z 1934; (b) $(pM-N_2+H)^+$, m/z 1956.

Figure S9. ω B97XD/6-31+G(d,p) optimized structures of complexes **5-9**. Atom color coding as in Figure 6 of the main text.

Figure S10. Close contacts between the diazirine carbon and the X—H (X = C, N, O) bonds of GNNQQNY_{NH2} in conformers **5** to **9** in the 100 ps trajectories. Red bars indicate close contacts at 4.5 Å in the optimized structures. Black and green bars indicate close contacts at 4.5 and 4.0 Å, respectively, as a result of 310 K thermal motion.

Figure S11. Calculated distribution of vibrational energies in complex **1** at 310 K. The broken-line arrows limit the area under one standard deviation from the 361 kJ mol^{-1} mean energy.

