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1.  Angle variation in deformation  

As shown in Figure S1 (a), Angle θ, involving two bonds jointed by bead b, changes along with 

the rotation of bond ab, when bond cb is fixed. Note that the rotation plane is not the same as the 

plane defined by bead a, b and c. In this case, the variation of angle θ can be expressed as a function 

of angle α, the angle between rotation plane and fixed bond cb, and angle β, the angle between 

projection of bond cb onto rotation plane and bond ab. Mathematically, the relation can be 

expressed as follows, 

𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠𝛼 ∗ 𝑐𝑜𝑠𝛽                                                       (S1). 

As we take differentials on both sides assuming that angle α maintains the same during rotation of 

bond cb, we can get the following equation 

𝛿𝜃 =
𝑐𝑜𝑠𝛼∗𝑠𝑖𝑛𝛽

𝑠𝑖𝑛𝜃
𝛿𝛽                                                           (S2) 

Figure S1 (b)-(d) shows the change of  angle θ1 and θ2 under uniaxial tension along armchair 

direction, while Figure S2 shows angle changes under uniaxial tension along zigzag direction. 

2. Force-displacement relation analysis for a unit cell 

Figure S3 shows the force and deformation map of a unit cell under uniaxial tension along both 

armchair and zigzag direction. In this case, Bead B2 is assumed to be fixed while the other beads 

can translate along bond direction and rotate around bead B2. Figure S2(a) shows the free body 

diagram under uniaxial tension along armchair direction. Under the forces shown in Figure S2(a), 

the beads would move coordinately and thus the unit cell would deform as shown in Figure S2(b). 

The movement of beads can be decomposed into two parts: translation along the bond direction 

and rotation around the fixed bead B2. The translation can be calculated through dividing the force 

component along bond direction by the bond stiffness. However, the rotation is a little bit 

complicated, in which all the angle springs involving the targeted beads should be taken into 

consideration. In other words, the effect of angle network can not be neglected. Take bead B4 in 

Figure S3(b) for example, the translation along bond B2-B4 can be easily calculated by dividing 

the force component along B2-B4, 2𝐹𝑐𝑜𝑠30.60, by the stiffness of bond B2-B4, 𝑘𝑏. On the other 

hand, for bead B4, there are four 𝜃2 angles would change identically due to the torque generated 

by the force on bead B4. Therefore, the rotation of  should be calculated by  the following 

expression, 𝑟2
2𝐹𝑠𝑖𝑛30.60𝑟2

4𝑘𝜃2
𝑐3

, where 𝑟2 is the length of bond B2-B4, 𝑘𝜃2
is the stiffness of angle 𝜃2, and 

𝑐3 is the ratio between variation of 𝜃2, 𝛿𝜃2, and the variation of 𝛽2, 𝛿𝛽2, as shown in Figure S1(d). 

Similarly, the movement of the other beads can be calculated. 

Subsequently, the elastic modulus can be calculated under uniaxial tension along both x (armchair) 

and y (zigzag) direction. First, the strain along x direction can be expressed as follows: 

      𝜀𝑥 =
𝑑𝑥
𝑎1
2

=

𝐹𝑠𝑖𝑛79.80𝑟1
2

2𝑘𝜃𝑐1+2𝑘𝜃𝑐2
𝑠𝑖𝑛79.80+

𝐹𝑐𝑜𝑠79.80

𝑘𝑏
𝑐𝑜𝑠79.80+

2𝐹𝑠𝑖𝑛30.60𝑟2
2

4𝑘𝜃𝑐3
𝑠𝑖𝑛30.60+

2𝐹𝑐𝑜𝑠30.60

𝑘𝑏
𝑐𝑜𝑠30.60

𝑎1
2

            (S3) 

 



where 𝑎1is the lattice constant along x (armchair) direction as shown in Figure 1(a).The stress 

along x direction can be expressed as follows: 

𝜎𝑥 =  
2𝐹

ℎ𝑎2
                                                                (S4) 

where ℎ is the interlayer distance as shown in Figure 1(d) while 𝑎2 is the lattice constant along y 

(zigzag direction) as shown in Figure 1(a). Second, the strain along the y direction can be 

expressed as follows: 

𝜀𝑦 =  
𝑑𝑦

𝑎2
=
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The stress along y direction can be expressed as follows:  

𝜎𝑦 =
𝐹

𝑎1
2

ℎ
                                                               (S6) 

Finally, the elastic moduli on both armchair and zigzag direction can be obtained as follows: 

𝐸𝑎𝑟𝑚 =  
𝜎𝑥

𝜀𝑥
                                                            (S7) 

𝐸𝑧𝑖𝑔 =  
𝜎𝑦

𝜀𝑦
                                                             (S8) 

3. Adhesion energy 

Two CG-MD phosphorene sheets sized 344.8 Å×276.8 Å are staggered together with a interlayer 

distance 5.24 Å as shown in Figure S4(a). During the simulation, the bottom sheet is fixed while 

the top sheet is moved stepwise with step size 8 Å following energy minimization, in which 

periodic boundary conditions are adopted in x and y direction while non-periodic boundary 

condition is applied in z direction. A set of simulations have been done, in which potential well 𝜀 

for Lennard-Jones potential is tuned to approach the targeted interlayer adhesion for phosphorene 

systems. An example of potential energy change with the potential well 𝜀 equal to 0.167eV is 

shown in Figure S(4)b, indicating that when D is bigger than 8 Å the potential energy change 

compared to equilibrium state reaches a plateau. This potential energy change determines the work 

done to separate two phosphorene sheets. Accordingly, the resultant interlayer adhesion 𝛾𝑎𝑑 is 

equal to 0.345 J/m2, in close agreement with our targeted adhesion for phosphorene.  The optimized 

value for 𝜀 is equal to 0.167 eV as listed in Table 1. The other parameter σ = 4.45 Å listed in Table 

1 is obtained to ensure that the interlayer distance ℎ is equal to 5.24 Å as shown in Figure 1(d) [2, 

3]. We include associated revisions in section 2.2 in the main context. 
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Figure S1 The relations between rotation angle of bonds and the change of angle springs under uniaxial 

tension along armchair direction. 

 

 

Figure S2 The relations between rotation angle of bonds and the change of angle springs under uniaxial 

tension along zigzag direction. 

 

  



 

Figure S3 Force-displacement map of a unit cell under uniaxial tension along both armchair and zigzag 

directions. 



 

Figure S4. (a) Top view of the simulated phosphorene sheets; (b) Potential energy change during 

the separation of two adjacent phosphorene sheets (inset shows schematically how the separation 

of two phosphorene sheets is done, in which the bottom sheet is fixed while the distance between 

top and bottom sheet can be tuned). 



 

Figure S5 Fracture strength versus crack length for phosphorene sheets with cracks vertical to the zigzag 

direction under tension along zigzag direction 

 


