Single Tungsten Atom Supported on N-Doped γ-graphyne as a High-Performance Electrocatalyst for Nitrogen Fixation under Ambient Conditions

Tianwei He, Sri Kasi Matta and Aijun Du*

School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia

Figure S1. Structures of WN_x with (a) WN_1 , (b) and (c) WN_2 and (d) WN_3 active centers. Gray, cyan and blue balls represent the C, W and N atoms, respectively.

Figure S2. Calculated free energy diagrams for N_2 adsorption and protonation of end-on and side-on configurations for different N coordinates.

Table S1. The calculated zero point energies and entropy correction of different adsorption species, where the * represents the catalyst, $N \equiv N$ and $N \equiv N$ refer to the side-on and end-on adsorption configurations, respectively.

Adsorption Species	$E_{\rm ZPE}$ (eV)	<i>-TS</i> (eV)
N_2	0.15	-0.58
*N≡*N	0.20	-0.19
*N=*NH	0.49	-0.13
*NH =*NH	0.77	-0.15
*NH-*NH ₂	1.14	-0.17
*NH ₂ -*NH ₂	1.48	-0.25
*NH2-*NH3	1.64	-0.29
*N-*NH2	0.77	-0.12
*N	0.06	-0.04
*NH	0.34	-0.09
*NH ₂	0.65	-0.14
*NH3	1.03	-0.16
*N≡N	0.19	-0.18
*N=NH	0.45	-0.14
*NH=NH	0.81	-0.24
*NH-NH ₂	1.11	-0.18
*NH ₂ -NH ₂	1.42	-0.23
*N-NH ₂	0.2	-0.18
NH ₃	0.58	-0.56