Supporting Information

Role of the carbon defects in the catalytic oxygen reduction by graphite nanoparticles: a spectromagnetic, electrochemical and modellistic integrated approach.

Claudio Greco¹, Ugo Cosentino^{1*}, Demetrio Pitea¹, Giorgio Moro², Saveria Santangelo³, Salvatore Patanè⁴, Massimiliano D'Arienzo⁵, Michele Fiore⁵, Franca Morazzoni⁵, Riccardo Ruffo^{5*}

¹ Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy

²Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy

³ Università "Mediterranea", Dip. di Ing. Civile dell'Energia, dell'Ambiente e dei Materiali (DICEAM), Salita Melissari I– 89124, Reggio Calabria, Italy

⁴ Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, Messina, Italy

⁵ INSTM, Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy

*corresponding authors

ugo.cosentino@unimib.it riccardo.ruffo@unimib.it

Figure S1. Results of spectra fitting. (a–b) First- and (c–d) second-order regions of the spectra of (a,c) commercial and (b,d) ball-milled graphites.

Table S1. Centre wavenumber positions (ω) and widths (γ , namely FWHM) of the main bands. The D/G and 3DB/(3DB+2D) integrated intensity ratios (I_D/I_G and $I_{3DB}/(I_{3DB}+I_{2D})$) are also reported.

Sample	ω	γт	ω _D	γ'n	Ю _А	γA	ЮG	γG	$I_{\rm D}/I_{\rm G}$	$I_{3DB}/(I_{3DB}+I_{2D})$
Code	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})		
PG			1352	46			1582	22	0.09	0.78
BM	1204	212	1344	75	1470	95	1581	55	1.08	0.37

Figure S2. Reaction product of C₉₅H₂₄ with molecular oxygen

Figure S3. Reaction product of C₉₆H₂₃ with molecular oxygen

Figure S4. Reaction product of $C_{96}H_{22}$ with molecular oxygen

Table S2. Spin densities at the zig-zag and arm-chair positions of the considered PAH⁽⁻⁾. In the case of $C_{150}H_{30}^{(-)}$, values at the $C^{(a)}$ and the $C^{(b)}$ zig-zag positions are reported (see text).

	$C_{24}H_{12}^{(-)}$	$C_{54}H_{18}^{(-)}$	$C_{96}H_{24}$ (-)	$C_{150}H_{30}^{(-)}$
Zig-zag	-	0.17	0.16	$C^{(a)} 0.20$
				C ^(b) 0.10 - 0.15
Arm-chair	0.20	0.04	0.02	0.01-0.06