Supporting information for:

Single Boron Atom doped Boron Nitride Edge as Metal-free Catalyst for N_2 Fixation

Xin Mao¹, Si Zhou^{1, 2,*}, Cheng Yan¹, Zhonghua Zhu³ and Aijun Du^{1*}

¹School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia

² Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024

³School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia

Table S1. Calculated zero point energies and entropy of different adsorption species, where the * represents the active site.

Adsorption	E _{ZPE} (eV)	-TS (eV)
species		
N_2	0.15	-0.58
*N ₂ (end-on)	0.22	-0.14
*NNH	0.51	-0.16
$*NNH_2$	0.82	-0.17
*NNH ₃	1.19	-0.16
*NH	0.35	-0.09
$*NH_2$	0.76	-0.12
*NH ₃	0.97	-0.16
*NHNH	0.85	-0.15
$*NHNH_2$	1.15	-0.19
$*NH_2NH_2$	1.35	-0.22
$*NH_2NH_3$	1.60	-0.28
*N ₂ (side-on)	0.19	-0.12
*NNH	0.49	-0.14
*NHNH	0.81	-0.13
$*NHNH_2$	1.14	-0.17
$*NH_2NH_2$	1.34	-0.21
*NH ₂ NH ₃	1.60	-0.28
NH_3	0.58^{1-2}	-0.56

Table S2. The formation energy for B decorated at different adsorption site of BN zigzag edge and armchair edge.

The formation energy of B at BN edge is calculated by,

 $E_{ad} = E_{B@BN} - E_B - E_{BN}$

Where $E_{B@BN}$, E_B , and E_{BN} is the total energy of single B decorated at BN edge, single B atom in bulk phase, and pure BN edge.

Figure S1.

Figure S1. a) Charge variation of three moieties. b) N-N bond distance along the distal mechanism via end-on adsorption pathway, where the bond length increases linearly before broken.

1. Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C., Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. *Energ Environ Sci* **2016**, *9* (8), 2545-2549.

2. Ling, C.; Bai, X.; Ouyang, Y.; Du, A.; Wang, J., Single Molybdenum Atom Anchored on N-Doped Carbon as a Promising Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions. *The Journal of Physical Chemistry C* **2018**, *122* (29), 16842-16847.