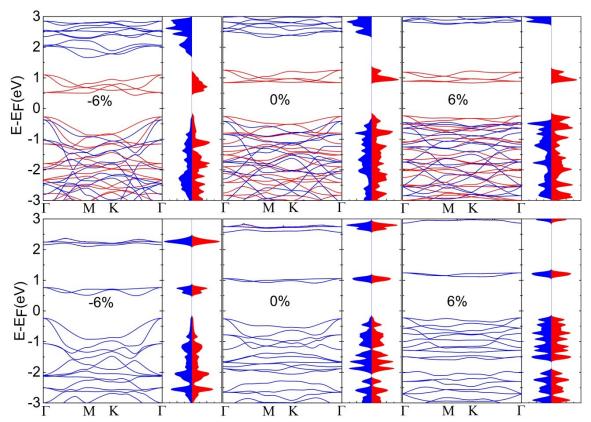
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information for


Strain-tunable magnetic and electronic properties of monolayer CrI₃

Zewen Wu¹, Jin Yu^{2,3} and Shengjun Yuan^{1,2}

- 1 School of Physics and Technology, Wuhan University, Wuhan 430072, China
- 2 Beijing Computational Science Research Center, Beijing 100094, China
- 3 Theory of Condensed Matter, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

Table S1 Total energy of monolayer CrI_3 with biaxial strain within DFT and DFT+U. E_{AFM} and E_{FM} are total energy for AFM and FM states, respectively. And ΔE is defined as E_{AFM} - E_{FM} .

	DFT			DFT+U		
	-6%	0	6%	-6%	0	6%
$E_{FM}(eV)$	-31.138	-31.563	-31.119	-28.765	-29.230	-29.030
$E_{AFM}(eV)$	-31.008	-31.501	-31.395	-28.566	-29.147	-29.104
$\Delta E (eV)$	0.130	0.062	-0.275	0.199	0.083	-0.074

Figure S1 Electronic structure of monolayer CrI₃ with biaxial strain from DFT+U calculations. Top and bottom panel represent the result for the FM and AFM state, respectively. Red and blue indicate the spin-up and spin-down electrons. The Fermi level is set to zero.