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Tip diameter=14 nm
（a） Tip diameter=60.3 nm（b）

Figure S1. Scanning electron micrograph of AFM tip (radius= about 30 nm) (a) before and (b) after use in our experiments. (a) is from the database of manufacturer 
(Olympus company).
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Figure S2. The force-displacement curves for a square MoS2 monolayers, with the side length of 1.5 μm and performed at the force of 1500 nN. 1th, 2th, 3th, 4th, and 5th 

mean the first, the second, the third, the fourth, and the fifth supplemental nanoindentation experiments.
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The sequence of the supplemental nanoindentation experiments
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Figure S3. Energy dissipations of hysteresis loops in monolayer MoS2 sheets for 1th ~5th supplemental nanoindentation experiments. 
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Tip diameter=35 nm

Figure S4. Scanning electron micrograph of AFM tip (diameter= about 35 nm) after use in the supplemental nanoindentation experiments. The Scanning electron 
micrograph of AFM tip before the supplemental experiments is the same as Figure S1 (a). 

MD simultions 
In the MD simulations, the monolayer MoS2 film is comprised of a 2D hexagonal honeycomb lattice where a layer of Mo atoms is 

sandwiched between two layers ( the top and bottom layer) of S atoms, with each Mo atom ionically bonded to six S atoms.1 In order to 
efficiently simulate the atomic models, the sizes of tip and the monolayer MoS2 films are scaled down. The rectangular and circular regions 
with various sizes (80, 100, 120 and 150 Å in diameter or in side length) are defined extending from the center of the films for the 
nanoindentation simulations, and atoms outside the circular region are fixed as the boundary. A spherical virtual tip with a radius of 3 Å is 
modeled where there is only repulsive force between tip and monolayer MoS2 sheets. The tip is loaded along the z-axis, and set as a rigid body 
to avoid the tip wear. The loading rate was set to 0.2 Å/ps, referring to our previous work.2

Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to perform the AFM nanoindentation. The atomic 
interactions in the monolayer MoS2 were determined by the reactive empirical bond-order (REBO) potentials, which has been verified to be 
more accurate in describing the elastic and mechanical properties of monolayer MoS2.3-6 The interaction between the monolayer MoS2 and the 
tip was described by the Lennard–Jones (LJ) potential, which has been demonstrated in our previous works.2, 4 Before the nanoindentation 
process, the energy of the system was minimized by the conjugated gradient method, and the isothermal–isobaric (NPT) ensemble controlled 
by the Nosé-Hoover method was then employed for system relaxation at a temperature of 0.1 K and a pressure of 0.1 bar (the time step is set 
to 1 fs). 
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Figure S5. The MD simulated loading force-deflection curves, breaking forces Fmax and breaking stresses σmax of the rectangular (a, c and e) and circular (b, d and f) 
monolayer MoS2 films with various sizes (80, 100, 120 and 150 Å in side length or diameter). The breaking stresses σmax are calculated according to the equation 2 in the 
paper.
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