Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Role of sulfur in proton-induced collisions of RNA prebiotic precursors

Marie-Christine Bacchus-Montabonel

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, VILLEURBANNE, France

Supplementary information

Fig. S1: a) Adiabatic potential energy curves of the 1A states in the collision of a proton on 2-aminooxazole in the z direction. Black, entrance channel H^+ + 2-aminooxazole $\{\{p_{xy}^{\ N}\}^2\}^2$ $\{\pi_2\}^2$ $\{\pi_{CC}\}^2\}$; red, charge transfer channel $\{\{p_{xy}^{\ N}\}^2\}^2$ $\{\pi_2\}^2$ $\{\pi_{CC}\}$ $\{\pi_1\}$ with singly excitation to the $1s_H$ orbital on hydrogen; green, charge transfer channel $\{\{p_{xy}^{\ N}\}^2\}^2$ $\{\pi_2\}^2$ $\{\pi_{CC}\}^2$ $1s_H\}$; magenta, charge transfer channel $\{\{p_{xy}^{\ N}\}^2\}^2$ $\{\pi_2\}^2$ $\{\pi_{CC}\}^2$ $\{\pi_1\}^2$; magenta, charge transfer channel $\{\{p_{xy}^{\ N}\}^2\}^2$ $\{\pi_2\}^2$ $\{\pi_{CC}\}^2$ $\{\pi_1\}^2$; b) Adiabatic potential energy curves of the 1A states in the collision of a proton on 2-aminooxazole towards C=C. Black, entrance channel H^+ + 2-aminooxazole $\{\{\pi_2\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$; red, charge transfer channel $\{\{\pi_2\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$; red, charge transfer channel $\{\{\pi_2\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$; red, charge transfer channel $\{\{\pi_2\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$; red, charge transfer channel $\{\{\pi_2\}^2\}^2$ $\{\{\pi_{CC}\}^2\}^2$ $\{\{\pi$

Fig. S2: Main molecular orbitals involved in the charge transfer process in collision of a proton on 2-aminooxazole

