Supporting Information:

Achieving Direct Band Gap and High Power
 Conversion Efficiency in $\mathrm{Sbl}_{3} / \mathrm{Bil}_{3}$ Type-II

 vdW Heterostructure via Interlayer

 vdW Heterostructure via Interlayer

 Compression and Electric Field

 Compression and Electric Field}

Kang Lai, ${ }^{\dagger}$ Hongxing Li, ${ }^{\dagger}$ Yuan-Kai Xu, ${ }^{\dagger}$ Wei-Bing Zhang, ${ }^{*, \dagger, \ddagger}$ and Jiayu Dai ${ }^{〔}$
\dagger School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, People's Republic of China \ddagger Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
\title{ 【Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, People's Republic of China }
E-mail: zhangwb@csust.edu.cn

Phone: $+86(0) 73185258223$. Fax: $+86(0) 73185258217$

Figure S1: Top (a) and side (b) view of six selected configurations within $\mathrm{SbI}_{3} / \mathrm{BiI}_{3}$ moiré pattern A. The green, yellow, blue and purple balls represent Sb, Bi, and I atoms, respectively.

Figure S2: Top (a) and side (b) view of six selected configurations within $\mathrm{SbI}_{3} / \mathrm{BiI}_{3}$ moiré pattern B . The green, yellow, blue and purple balls represent Sb, Bi, and I atoms, respectively.

Figure S3: The electronic band structure of free-standing BiI_{3} and stretched SbI_{3} single-layer.

Figure S4: The orbitals-projected band structure of interlayer $\mathrm{I}\left(\mathrm{p}_{z}\right)$ states ((a)-(d)) and $\mathrm{I}\left(\mathrm{p}_{x}, \mathrm{p}_{y}\right)$ states $((\mathrm{e})-(\mathrm{h}))$ with different interlayer distances.

Figure S5: The layer-projected band structure and the isosurface of charge density of the VBM and CBM of $\mathrm{SbI}_{3} / \mathrm{BiI}_{3} \mathrm{vdW}$ heterostructure under $-0.1(\mathrm{a}),-0.3(\mathrm{~b})$ and $-0.5 \mathrm{~V} / \AA(\mathrm{c})$ electric field. The value of isosurface is $0.00055 \mathrm{e} / \mathrm{bohr}^{3}$.

Figure S6: The layer-projected band structure and the isosurface of charge density of the VBM and CBM of $\mathrm{SbI}_{3} / \mathrm{BiI}_{3}$ vdW heterostructure under $0.1(\mathrm{a}), 0.3(\mathrm{~b})$ and $0.5 \mathrm{~V} / \AA$ (c) electric field. The value of isosurface is $0.00055 \mathrm{e} / \mathrm{bohr}^{3}$.

