Supporting Information

Plasmon-coupled charge transfer in WO_{3-x} semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms

Xiangyu Hou^a, Xiaoguang Luo^b, Xingce Fan^a, Zhaohui Peng^a, Teng Qiu*,^a

^aSchool of Physics, Southeast University, Nanjing, 211189, P.R. China.

^bShanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P.R. China.

*E-mail: tqiu@seu.edu.cn

Fig. S1 A series of HPWNs fabricated by adjusting t_w . (a-d) A series of SEM images acquired from HPWNs formed under different constant t_w : (a) 500, (b) 800, (c) 1100 and (d) 1400 s. (e) Optical image of (a-d).

Fig. S2 D and L analysis of HPWNs. (a-d) A series of AFM images acquired from (Figure S1a-S1d). (e, f) Cross-section analysis along the blue and red lines in (b), respectively. The value of D was acquired from the distance of two adjacent peak valleys in (e). The value of L was calculated by the vertical line of each petal on HPWNs acquired from the distance between dent and adjacent bowl in (f).

Fig. S3 XRD spectra of HPWNs.

Fig. S4 SERS measurements of R6g with different thickness of SiO_2 coated on HPWNs. The concentration of R6g was 10^{-5} M and the thickness of SiO_2 was 2, 3, 5, 7, and 10 nm, respectively.

Fig. S5 SERS measurements of R6g on the double-switches experiment with t_w =500 s. (a) Raman spectra of R6g (10⁻⁵ M) collected on I-IV substrates. (b-e) Intensities of Raman signals of P1 (612 cm⁻¹) vibration mode of R6g molecule on I-IV substrates. Data were acquired by 55 points from a total of five samples for each substrates.

Fig. S6 SERS measurements of R6g on the double-switches experiment with t_w =800 s. (a) Raman spectra of R6g (10⁻⁵ M) collected on I-IV substrates. (b-e) Intensities of Raman signals of P1 (612 cm⁻¹) vibration mode of R6g molecule on I-IV substrates. Data were acquired by 55 points from a total of five samples for each substrates.

Fig. S7 SERS measurements of R6g on the double-switches experiment with $t_w=1100$ s. (a) Raman spectra of R6g (10⁻⁵ M) collected on I-IV substrates. (b-e) Intensities of Raman signals of P1 (612 cm⁻¹) vibration mode of R6g molecule on I-IV substrates. Data were acquired by 55 points from a total of five samples for each substrates.

Fig. S8 SERS measurements of R6g on the double-switches experiment with t_w =1400 s. (a) Raman spectra of R6g (10⁻⁵ M) collected on I-IV substrates. (b-e) Intensities of Raman signals of P1 (612 cm⁻¹) vibration mode of R6g molecule on I-IV substrates. Data were acquired by 55 points from a total of five samples for each substrates.

Fig. S9 UV-vis absorption spectra. (a-d) A series of UV-vis absorption spectra acquired from HPWNs compared with WO_{3-x} films by adjusting t_w (500 s, 800 s, 1100 s and 1400 s, respectively). The energy changes were -0.05646, 0.197544, 0.0333 and 0.197135 eV, respectively. (e1-e3) UV-vis absorption spectra of a water solution of MO (10⁻⁴ M), MeB (10⁻⁵ M) and R6g (10⁻⁵ M), respectively.

Analyte	Excited	SERS-	LSPR	μ_{mol}	SERS	Reference
	wavelength	PICT			enhancement	
	(nm)					
RhB	532nm	on	on	on		1,2
MB	633nm	off	on	on		1,3,4
4-Mpy	532nm	on	on	off		5,6
4-MBA	532nm	on	on	off		3,7
РА	532nm	on	on	off		8–10
TNT	532nm	on	on	off		10-12

Table S1 Detection of probe molecules on HPWNs by specific rules. The prediction of probemolecules could be detected on HPWNs from literatures by specific rules.

REFERENCES

- S. Shi, M. A. Gondal, A.A. Al-Saadi, R. Fajgar, J. Kupcik, X. F. Chang, K. Shen, Q. Y. Xu and Z. S. Seddigi. *J. Colloid Interface Sci.*, 2014, 416, 212–219.
- P. H. Shao, J. Y. Tian, Z. W. Zhao, W. X. Shi, S. S. Gao and F. Y. Cui. *Appl. Surf. Sci.*, 2015, **324**, 35–43.
- 3 H. Wu, H. Wang and G. Li. *Analyst.*, 2017, **142**, 326–335.
- 4 S. Naraginti, F. B. Stephen, A. Radhakrishnan and A. Sivakumar. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2015, **135**, 814–819.
- 5 X. Y. Su, H. Ma, H. Wang, X. L. Li, X. X. Han and B. Zhao. *Chem. Commun.*, 2018, **54**, 2134–2137.
- 6 J. R. Lombardi. Faraday Discuss., 2017, 205, 105–120.
- 7 W. N. Liu, T. Yang, J. H. Chen, Y. Z. Chen, X. M. Hou, X. M. Han and K. C. Chou. *Phys. Chem. Chem. Phys.*, 2016, 18, 27572–27576.
- A. Deshmukh, S. Bandyopadhyay, A. James and A. Patra. *J. Mater. Chem. C.*, 2016, 4, 4427–4433.
- S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer. *Chem. Commun.*, 2015, **51**, 7207–7210.
- 10 Z. Hu, B. J. Deibert and J. Li. Chem. Soc. Rev., 2014, 43, 5815–5840.
- J. H. Qin, B. Ma, X. F. Liu, H. L. Lu, X. Y. Dong, S. Q. Zang and H. W. Hou. J. Mater. Chem. A., 2015, 3, 12690–12697.
- 12 P. Wu, C. Xu, X. Hou, J. J. Xu and H. Y. Chen. Chem. Sci., 2015, 6, 4445–4450.