Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

## **Supporting Information for**

## Double graphic-N doping for enhanced catalytic activity of carbocatalysts

Meiling Hou<sup>1,2</sup>, Xin Zhang<sup>1</sup>, Shandong Yuan<sup>\*2</sup>, Wanglai Cen<sup>\*2,3</sup>



Figure S1. Total density of states (TDOS) of different double GrN atoms doped graphene.



**Figure S2.** Minimum energy pathway (MEP) of O<sub>2</sub> dissociation reactions (ODR) by 2NG\_3.



**Figure S3.** Top view of minimum energy pathway (MEP) of O<sub>2</sub> dissociation reactions (ODR) by 2NG\_3.



Figure S4. Minimum energy pathway (MEP) of  $O_2$  dissociation reactions (ODR) by 2NG\_5. Red, blue and brown spheres depict O, N and C atoms. All lengths are given in Å.



**Figure S5.** Top view of minimum energy pathway (MEP) of O<sub>2</sub> dissociation reactions (ODR) by 2NG\_5.



**Figure S6.** Spin charge density of  $O_2$  adsorbed on different double GrN atoms doped graphene. All the absorbed oxygen molecules are in triple state and in ground state.

Table S1. Summary of the Calculated Results for O2 Adsorption on Different Surfaces

| configuration | $d_{\text{O-O}}{}^{a}\left(\text{\AA}\right)$ | $d_{O\text{-}C}{}^{b}\left(\text{\AA}\right)$ | $d_{\text{O-N}}{}^{b}\left(\text{\AA}\right)$ | $d_{\text{O-sur}}{}^{b}\left(\text{\AA}\right)$ | $\Delta q_{IS}^{c}\left( e ight)$ | $\Delta q_{TS}^{c}(e)$ |
|---------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------|------------------------|
| 2NG_3/A       | 1.29                                          | 2.58                                          | 2.69                                          | 2.68                                            | 0.41                              | 1.21                   |
| 2NG_3/B       | 1.29                                          | 2.47                                          | 2.64                                          | 2.68                                            | 0.35                              | 0.82                   |
| 2NG_5/A       | 1.28                                          | 2.55                                          | 3.24                                          | 2.58                                            | 0.41                              | 0.83                   |
| 2NG_5/B       | 1.28                                          | 2.54                                          | 2.73                                          | 2.52                                            | 0.36                              | 0.78                   |

a: Bond length of the O<sub>2</sub> molecule. b: Distance between O, the closest C/N atom on the surface and the surface. c: Bader effective charge for the O<sub>2</sub> molecule.  $\Delta q$  = Bader population – valence electrons.



**Figure S7.** Minimum energy pathway (MEP) of  $O_2$  dissociation reactions (ODR) by NG. Red, blue and brown spheres depict O, N and C atoms. All lengths are given in Å.



**Figure S8.** Top view of minimum energy pathway (MEP) of O<sub>2</sub> dissociation reactions (ODR) by NG.



Figure S9 Minimum energy pathway (MEP) of  $O_2$  dissociation reaction on 2NG\_1 (a and b), 2NG\_2 (c~d).  $E_b$  and  $E_r$  stand for the energy barrier and reaction energy respectively. Red, blue and brown spheres depict O, N and C atoms. All lengths are given in Å.

## (a) SOR1@2NG\_3/A



(b) SOR1@2NG\_3/B



(c) SOR1@2NG\_5/A-1



(d) SOR1@2NG\_5/B-1



(e) SOR1@2NG\_5/A-2



Figure S10. Minimum energy pathway (MEP) of SO<sub>2</sub> oxidation reactions 1 (SOR1) by

2NG\_3 (a and b), 2NG\_5 (c~f).  $E_b$  and  $E_r$  stand for the energy barrier and reaction energy respectively. Red, blue and brown spheres depict O, N and C atoms. All lengths are given in Å. (a) SOR2@2NG\_3/A



Figure S11. Minimum energy pathway (MEP) of SO<sub>2</sub> oxidation reactions 2 (SOR2) by

2NG\_3 (a and b), 2NG\_5 (c~f).  $E_b$  and  $E_r$  stand for the energy barrier and reaction energy respectively. Red, blue and brown spheres depict O, N and C atoms. All lengths are given in Å.



**Figure S12.** Work function of different surface. (a): GP; (b): NG; (c): 2NG\_5. The red line stands for Fermi level. Inset: Charge difference for O2 adsorbed on different surface. The isosurfaces is set to 0.005 eV/Å<sup>3</sup>.



**Figure S13.** Electron localization function (ELF) between O-C for oxygen groups on GrN-doped graphene. (a): carbonyl in 2NG\_3; (b): epoxy in 2NG\_3; (c): carbonyl in 2NG\_3/A; (d): epoxy in 2NG\_3/B; (e): carbonyl in 2NG\_5/A; (f): epoxy in 2NG\_5/B.