## **Supporting Information**

## Theoretical screening promising donor and $\pi$ -linker groups for POM-based Zn-

## porphyrin dyes in dye-sensitized solar cells

Yu Gao <sup>a</sup>, Wei Guan <sup>a</sup>, Likai Yan <sup>a, \*</sup>, Yanhong Xu <sup>b, \*</sup>

<sup>a</sup> Institute of Functional Material Chemistry, National & Local United Engineering

Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of

Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.

R. China, Fax: +86-431-5684009.

<sup>b</sup> Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, Jilin, China.

\* Corresponding author, E-mail address: yanlk924@nenu.edu.cn (L. K. Yan), xuyh@jlnu.edu.cn (Y. H. Xu). 1.1 Details about the average dye electrostatic potential ( $V_{\rm EL}$ )

The average dye electrostatic potential on the  $TiO_2$  surface was evaluated by the following [1]:

$$V_{\rm EL} = \frac{1}{n {\rm Ti}} \sum_{i=1}^{n_{\rm Ti}} \sum_{j=1}^{n_{\rm q}} \frac{q_j}{r_{\rm ij}}$$
(1)

where  $q_j$  is the  $j_{th}$  of the  $n_q$  dye point charge calculated by Merz-Kollman method [2,3] to obtain the atomic charge distributions. And  $r_{ij}$  represents the distances between these of charges and each of the titanium atoms in the superficial layer of TiO<sub>2</sub> cluster. 1.2 Details about the number of electron transferred from dyes to TiO<sub>2</sub> ( $n_{CT}$ ) Three terms were defined in the CDA theory based on the fragment orbitals (FO) as

follows:

$$d_{i} = \sum_{m \in A}^{occ} \sum_{n \in B}^{vir} \eta_{i} C_{n,i} S_{m,n}$$
(2)

$$b_{i} = \sum_{m \in A} \sum_{n \in B}^{vir} \eta_{i} C_{m,i} C_{n,i} S_{m,n}$$
(3)

$$r_{i} = \sum_{m \in A}^{occ} \sum_{n \in B}^{occ} \eta_{i} C_{m,i} C_{n,i} S_{m,n}$$
(4)

where *vir* and *occ* represent virtual and occupied orbitals,  $d_i$  is the number of electrons donated from A to B, and  $b_i$  is the electron numbers back donated from B to A;  $r_i$  is the close-shell interaction between two occupied FOs in A and B; *i* and  $\eta$  are index and occupation number of MO of complex, respectively;  $S_{m,n} = \int \varphi_m(r) \varphi_n(r) dr$  is the overlap integral between FO *m* and FO *n*;  $C_{m,i}$  is the coefficient of FO *m* in MO *i* of complex; and  $C_{n,i}$  is the coefficient of FO *n* in MO *i* of complex. Here FO is the fragment orbital, and MO is the molecular orbital of the fragment in its isolated state.

## References

[1] Ronca, E., Pastore, M., Belpassi, L., Tarantelli, F., Angelis, F. D. Influence of the dye molecular structure on the TiO<sub>2</sub> conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. *Energy Environ. Sci.* **2013**, *6*, 183–193.

[2] Singh, U. C., Kollman, P. A. An approach to computing electrostatic charges for molecules. *J. Comput. Chem.* **1984**, *5*, 129–145.

[3] Besler, B. H., Merz, K. M., Kollman, P. A. Atomic charges derived from semiempirical methods. *J. Comput. Chem.* **1990**, *11*, 431–439.



Figure S1. The experimental and theoretical absorption spectra of SM315.



Figure S2. The heat maps of dyes 1–5.



Figure S3. Optimized geometrical structure of studied dyes adsorbed onto the  $(TiO_2)_9$  cluster.



Figure S4. Total and partial density of states (DOS) of dyes-(TiO<sub>2</sub>)<sub>9</sub> complexes.

| SM315     | $\lambda_{\max}$ | $\varepsilon(10^3{ m M}^{-1}{ m cm}^{-1})$ |
|-----------|------------------|--------------------------------------------|
| Exp.      | 454              | 117                                        |
|           | 668              | 53                                         |
| CAM-B3LYP | 459              | 117                                        |
|           | 626              | 47                                         |
| M06       | 432              | 139                                        |
|           | 706              | 58                                         |

**Table S1.** The experimental and theoretical maximum absorption wavelengths  $\lambda_{max}$  (nm) and molar absorption coefficient  $\varepsilon$ .

| dye   | $\Delta E_{\rm CB}$ | <i>n</i> <sub>CT</sub> | V <sub>EL</sub> |
|-------|---------------------|------------------------|-----------------|
| SM315 | 0.052               | 0.596                  | -0.336          |
| 1     | 0.151               | 0.646                  | -0.450          |
| 2     | 0.150               | 0.646                  | -0.450          |
| 3     | 0.138               | 0.647                  | -0.450          |
| 4     | 0.143               | 0.648                  | -0.444          |
| 5     | 0.155               | 0.655                  | -0.444          |

**Table S2.** CB shift ( $\Delta E_{CB}$ , eV), transfer charge ( $n_{CT}$ , e<sup>-</sup>) for dyes absorbed onto TiO<sub>2</sub> and average electrostatic potential ( $V_{EL}$ , eV) of studied dyes.