Supporting Information

Reaction pathways for HCN on transition metal surfaces

Mohammed K. Abdel-Rahman^a, Xu Feng^a, Mark Muir^a, Kushal Ghale^b, Ye Xu^b, and Michael Trenary^{*a}

^a Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States

^b Department of Chemical Engineering, Louisiana State University, Patrick F. Taylor Hall, Baton Rouge, LA 70803, United States

*Corresponding author email: <u>mtrenary@uic.edu</u>

Figure S1: Mass spectra of 5.0×10^{-8} Torr of $H^{12}C^{14}N$ (a), $H^{13}C^{14}N$ (b), and $H^{12}C^{15}N$ (c). The synthesized products were determined to be pure by comparing the relative intensity of mass number 26 for $H^{12}C^{14}N$ (27 for the heavier isotopes) with that of the electron impact mass spectrum of HCN in the NIST database. An intensity of 20% relative to the parent mass number (27 for $H^{12}C^{14}N$ and 28 for the heavier isotopes) agrees with the national standard indicating successful synthesis and purification of HCN.

Figure S2: RAIR spectra of $H^{12}C^{14}N$ on Pd(111) taken at 90 K on clean Pd(111). The band at 821 cm⁻¹ seen in the 1.5 L spectrum that shifts to 844 cm⁻¹ for 5.0 L is due to the HCN bending mode, which only appears in the multilayer spectra. Solid HCN begins forming at exposures of 2.5 L as indicated by the broad C-H stretching mode at 3184 cm⁻¹.

Figure S3: RAIR spectra of a) $1.0 \text{ L H}^{13}\text{C}^{14}\text{N}$ and b) $1.0 \text{ L H}^{12}\text{C}^{15}\text{N}$ on Pd(111) taken at 90 K after annealing for 1 minute at the indicated temperatures.

Figure S4: RAIR spectra taken at 90 K after annealing to 300 K for 1 min of $H^{12}C^{14}N$ on Pd(111) pre-exposed to H₂ (a) and exposed to H₂ after HCN exposure (b). Pre-exposure to H₂ reduced the amount of aminocarbyne formed more than for post-HCN exposure to H₂.

Figure S5: TPR spectra of 5.0 L HCN on Pd(111) taken from 90-1000 K at a heating rate of 1.5 K/s. Desorption of H₂ and HCN were observed at ~400 K. Although observed in other studies,^{1, 2} C_2N_2 was not observed as a desorption product in this work.

Calculated adsorption energies of various fragments using different methods

Based on the adaptive summing method of Hensley et al.,³ when the GGA-RPBE ΔE_{ads} value for a gas molecule falls roughly below 70% of the corresponding value in optB86b-vdW, one may expect the contribution of vdW to the adsorption energy on a transition metal surface like Pd(111) to become significant. Table S1 lists the ΔE_{ads} of several surface species that may be referenced directly to stable gas-phase species. See Ref. 3 for definition of the parameters *x* and *f*. An adaptively weighted sum of GGA-RPBE and optB86b-vdW ΔE_{ads} is found to be on average more accurate than that calculated using either functional alone. When f = 1 (as is the case for all the organic species listed in Table S1), this sum consists entirely of the optB86b-vdW ΔE_{ads} . When f = 0, the sum consists entirely of the GGA-RPBE ΔE_{ads} . Thus Table S1 indicates that GGA-RPBE under-binds the organic species but is adequate for describing H adsorption, on Pd(111). Comparison with available literature data suggests this conclusion to be correct.

anon associated adaptive summing parameters (wanaj).					
Species	Δ			$\Delta E_{ m ads}$	
	GGA-RPBE	optB86b-vdW	X	f	Exp. Lit.
HCN upright	0.00^{2}	-0.56 ²	1.00	1.00	-0.39 ¹
HCN di-s	-0.47 ²	-1.29 ²	0.63	1.00	
(HCN) ₂ ^a	-0.15 ^{2,3}	-1.02 ^{2,3}	0.86	1.00	
CNH	-1.08 ²	-1.80 ²	0.40	1.00	
Н	-0.39 ⁴	-0.57 ⁴	0.31	0.01	-0.44 ⁵

Table S1: DFT-calculated adsorption energies (ΔE_{ads} , in eV) of several molecular and atomic intermediates in HCN decomposition on Pd(111), and their associated adaptive summing parameters (*x* and *f*).

Each adsorbate is located on a (2×2) surface unit cell at 1/4 ML coverage. ΔE_{ads} is with respect to each adsorbate in gas phase and is non-ZPE corrected.

¹ From Ref. 2

² With respect to gas-phase HCN.

³ Per unit of HCN.

⁴ With respect to gas-phase H₂, per H atom.

⁵ From Ref. 4.

References

- 1. M. E. Kordesch, W. Stenzel and H. Conrad, *J. Electron. Spec. Rel. Phen.*, 1986, **39**, 89-96.
- 2. X. Guo, A. Hoffman and J. T. Yates, J. Phys. Chem., 1989, 93, 4253-4258.
- 3. A. J. R. Hensley, K. Ghale, C. Rieg, T. Dang, E. Anderst, F. Studt, C. T. Campbell, J.-S. McEwen and Y. Xu, *J. Phys. Chem. C*, 2017, **121**, 4937-4945.
- 4. J. Wellendorff, T. L. Silbaugh, D. Garcia-Pintos, J. K. Nørskov, T. Bligaard, F. Studt and C. T. Campbell, *Surf. Sci.*, 2015, **640**, 36-44.