Supporting Information for

Swelling of Different Clay Minerals: Dual Characteristics of

K⁺ ions and Exploration for Critical Influence Factor

Xiong Li,^{a, b} Qinyi Li,^a Sen Yang,^a Gang Yang^a

^a College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-

scale Interfacial Process, Southwest University, Chongqing 400715, China

^b College of Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China

Contents:

Table S1. Detailed information for clay systems per unit cell. P. S3
Table S2. Parameters for the CLAYFF potential. P.
S4
Table S3. The <i>d</i> -spacings (Å) of zero-layer (0W), one-layer (1W) and two-layer (2W)
hydration states for the 1.00O(K ⁺) systems P. S5
Figure S1 . Deviations of the <i>d</i> -spacing values for K ⁺ -bearing clay systems from those with 1.00 $e \cdot uc^{-1}$. P. S6
Figure S2 . Hydration energies for the first water molecules per unit cell (E_{h1}) for K ⁺ -
bearing clay systems, where the charges can be distributed in the octahedral (blue line)
and tetrahedral (red line) sheets P. S7
Figure S3. Atomic density profiles of K^+ , O_W and H_W for the three-layer hydrated
(3W) states of K ⁺ -bearing clay systems P. S8
Figure S4. Equilibrium snapshots for the two-layer hydrated (2W) states of Na ⁺ -
bearing clay systems, which differ in the number and location of charges as indicated
in the legends. P. S9
Figure S5. The d -spacing curves of Na ⁺ -bearing clay systems as a function of water
contents $(n_{H2O}uc^{-1})$. P.
S10

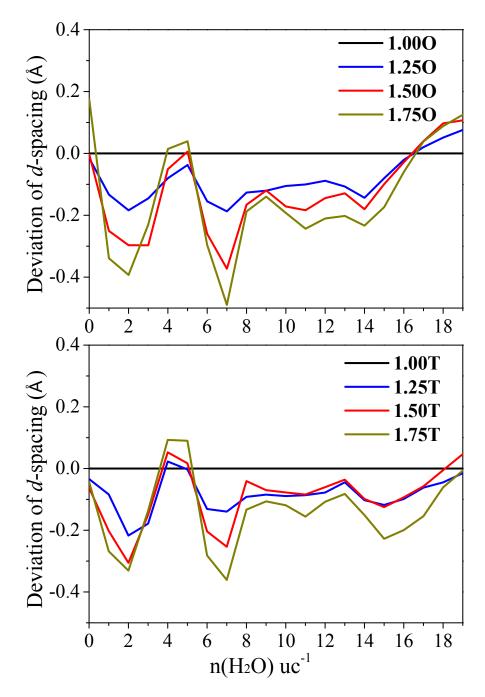
System	Interlayer ion	Number of charges	Charge location	Chemical formula ^{<i>a</i>}	Molar mass ^a
1.00O(K ⁺)	K^+	-1.00	octahedral	KSi ₈ Al ₃ MgO ₂₀ (OH) ₄	757.100
1.25O(K ⁺)	K^+	-1.25	octahedral	$K_{1.25}Si_8Al_{2.75}Mg_{1.25}O_{20}(OH)_4$	788.045
1.50O(K ⁺)	K^+	-1.50	octahedral	$K_{1.5}Si_8[Al_{2.5}Mg_{1.5}]O_{20}(OH)_4$	775.250
1.75O(K ⁺)	K^+	-1.75	octahedral	$K_{1.75}Si_8Al_{2.25}Mg_{1.75}O_{20}(OH)_4$	784.325
1.00T(K ⁺)	K^+	-1.00	tetrahedral	$K_1[Si_7Al_1]Al_4O_{20}(OH)_4$	758.700
1.25T(K ⁺)	K^+	-1.25	tetrahedral	$K_{1.25}[Si_{6.75}Al_{1.25}]Al_4O_{20}(OH)_4$	768.175
1.50T(K ⁺)	K^+	-1.50	tetrahedral	$K_{1.5}[Si_{6.5}Al_{1.5}]Al_4O_{20}(OH)_4$	777.650
1.75T(K ⁺)	K^+	-1.75	tetrahedral	$K_{1.75}[Si_{6.25}Al_{1.75}]Al_4O_{20}(OH)_4$	787.125
1.00O(Na ⁺)	Na ⁺	-1.00	octahedral	NaSi ₈ Al ₃ MgO ₂₀ (OH) ₄	741.100
1.75O(Na ⁺)	Na ⁺	-1.75	octahedral	$Na_{1.75}Si_8Al_{2.25}Mg_{1.75}O_{20}(OH)_4$	739.075
1.00T(Na ⁺)	Na ⁺	-1.00	tetrahedral	$Na_1[Si_7Al_1]Al_4O_{20}(OH)_4$	742.700
1.75T(Na ⁺)	Na ⁺	-1.75	tetrahedral	$Na_{1.75}[Si_{6.25}Al_{1.75}]Al_4O_{20}(OH)_4$	741.250

Table S1. Detailed information for clay systems per unit cell

^{*a*} Before hydration.

Symbol	Description	<i>q</i> (e)	ε (kcal/mol)	$\sigma(\text{\AA})$
ao	octahedral aluminum	+1.575	1.3298×10-6	4.7949
st	tetrahedral silicon	+2.1	1.8405×10 ⁻⁶	3.7064
ob	bridging oxygen	-1.05	0.1554	3.5532
oh	hydroxyl oxygen	-0.95	0.1554	3.5532
obos	bridging oxygen with octahedral substitution	-1.1808	0.1554	3.5532
obts	bridging oxygen with tetrahedral substitution	-1.1688 0.1554		3.5532
ohs	hydroxyl oxygen with substitution	-1.0808	0.1554	3.5532
ho	hydroxyl hydrogen	+0.425		
hw	water hydrogen	+0.4100		
ow	water oxygen	-0.8200	0.1554	3.5532
Na	aqueous Na ⁺ ion	+1.0	0.1301	2.6378
K	aqueous K ⁺ ion	+1.0	0.1000	3.7423
Bond stretch ^b		k_l (kcal/mol Å ²)	$r_{ heta}\left(\mathrm{\AA} ight)$	
oh-ho		554.1349	1.0	
ow-hw		554.1349	1.0	
ohs-ho		554.1349	1.0	
Angle bend ^c		k_2 (kcal/mol rad ²)	$ heta_{ heta}$ (deg)	
	hw-ow-hw	45.7696	109.47	

 Table S2. Parameters for the CLAYFF potential ^a


^{*a*} *q* is partial charge, σ is the finite distance at which the inter-particle Lennard-Jones potential approaches zero, and ε is the well depth of Lennard-Jones potential;

^{*b*} k_1 is the harmonic potential constant and r_0 is equilibrium bond length;

c k_2 is the harmonic angle potential and θ is the equilibrium angle.

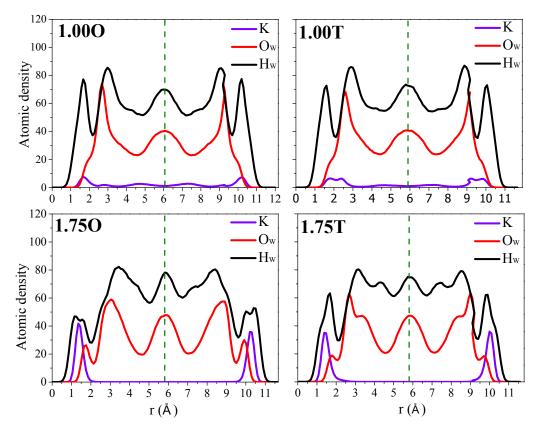
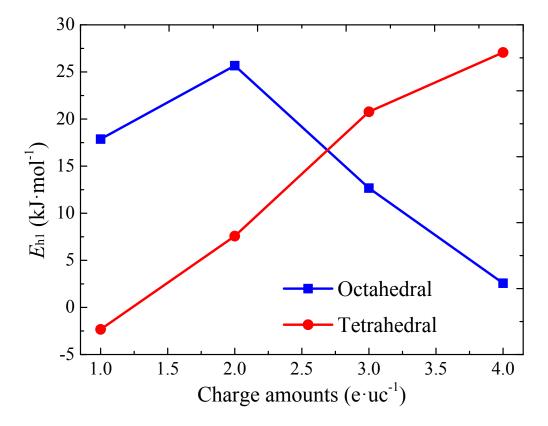

Source -	Hydration states				
source _	0W	1W	2W		
This work	9.95	12.62	15.91		
Ref. 7	9.95				
Ref. 14		12.49	15.61		
Ref. 18		12.46	16.30		
Ref. 38		12.25	14.75		
Ref. 39		12.75	15.0		
Ref. 60		12.5	15.3		
Ref. 61		12.5	16.0		

Table S3. The *d*-spacings (Å) of zero-layer (0W), one-layer (1W)and two-layer (2W) hydration states for the **1.00O(K**⁺) systems


Figure S1. Deviations of the *d*-spacing values for K⁺-bearing clay systems from those with $1.00 e \cdot uc^{-1}$.

The *d*-spacings of 1.00 $e \cdot uc^{-1}$ were set to 0 and used benchmarks.

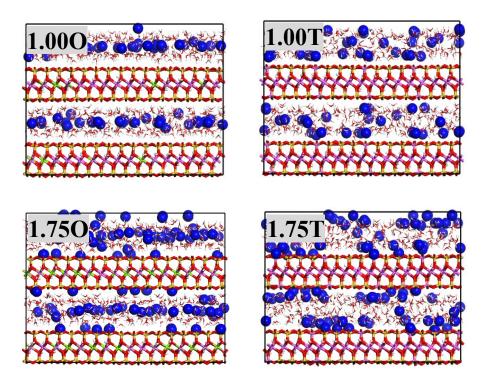


Figure S2. Atomic density profiles of K^+ , O_W and H_W for the three-layer hydrated (3W) states of K^+ -bearing clay systems.

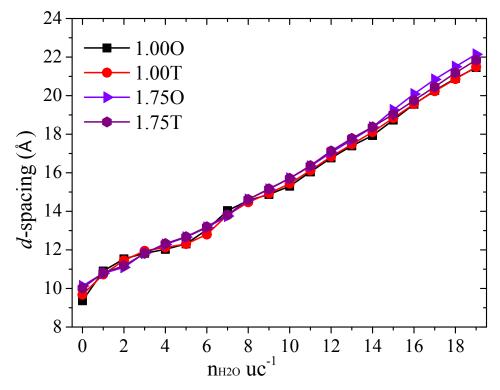

The central plane of interlayer space is marked in the green dashed line.

Figure S3. Hydration energies for the first water molecules per unit cell (E_{h1}) for K⁺bearing clay systems, where the charges can be distributed in the octahedral (blue line) and tetrahedral (red line) sheets.

Figure S4. Equilibrium snapshots for the two-layer hydrated (2W) states of Na⁺bearing clay systems, which differ in the number and location of charges as indicated in the legends.

Figure S5. The *d*-spacing curves of Na⁺-bearing clay systems as a function of water contents (n_{H2O} uc⁻¹).

The error bars are less than the size of symbols.