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1 Intercalation of deposited Pt film

In order to further evidence that the buried monolayer graphene (MLG) forms the bottom layer
in bilayer graphene (BLG), Fig. S1 demonstrates the entire intercalation of the thick Pt film
through the buried MLG. Upon annealing the Pt-covered MLG/Pt(111) sample (Fig. S1a) at
1200 K, the deposited Pt is flattening and intercalating under MLG (Fig. S1b,c). The segregated
MLG exhbits the characteristic moiré pattern (Fig. S1d).
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Figure S1: Pt intercalation of MLG-covered Pt(111). (a) STM image of Pt film deposited
on MLG/Pt(111) (1 V, 80 pA, 120 × 120 nm2). (b) STM image of the deposited Pt smoothed
by annealing at 720 K (1.5 V, 80 pA, 150 × 150 nm2). (c) STM image of MLG/Pt(111) after
complete intercalation of the deposited Pt at 1200 K (1.5 V, 80 pA, 100 × 100 nm2). (d) MLG
moiré pattern observed on the sample shown in (c) (0.1 V, 100 pA, 20× 20 nm2).

2 Analysis of graphene moiré patterns

Moiré patterns of monolayer graphene on Pt(111)

The moiré pattern is generated by the superposition of Pt(111) and the monolayer graphene
(MLG) lattices. In direct space, aPt, aC, δ denote the spatial periods of, respectively, the Pt(111)
surface, the graphene lattice, the moiré superstructure. In reciprocal space, the corresponding
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lattice vectors are kPt, kC, km with magnitudes kPt = |kPt| = 1/aPt, kC = |kC| = 1/aC,
km = |km| = 1/δ. The moiré superstructure represents a spatial beating pattern, which may be
expressed by1

km = kC − kPt. (S1)

with ϑ = 6 (kPt,kC) and ϕ = 6 (kPt,km) defined as the smallest angles enclosed by the respective
lattice orientations (Fig. S1). Due to the hexagonal symmetry of the lattices, ϑ and ϕ are
constrained to the interval [−30◦, 30◦]. Spatial periods and orientations of the moiré pattern
may readily be derived from the triangle formed by the three reciprocal lattice vectors (Fig. S1a).
Using the law of cosines yields δ as a function of ϑ,

δ =

√
1

a2C
+

1

a2Pt
− 2 cosϑ

aC · aPt

−1

. (S2)

Possible strain in the graphene sheet can be included by scaling the graphene lattice constant
appropriately. Figure 2e of the manuscript shows the resulting δ-versus-ϑ curves. Since δ is an
even function of ϑ, the interval ϑ = [0◦, 30◦] contains all possible moiré patterns.
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Figure S2: (a) Illustration of the moiré construction. The reciprocal lattice vectors of Pt(111)
(kPt), graphene (kC) and the moiré pattern (km) form a triangle. The angle enclosed by crystal-
lographic directions of Pt(111) and graphene is denoted as ϑ = 6 (kPt,kC), while ϕ = 6 (kPt,km)
is the angle between crystallographic directions of Pt(111) and the moiré lattice. Dashed and
dotted lines represent symmetry directions of, respectively, Pt(111) and the moiré superstruc-
ture. Dots on the circle with radius km = |km| indicate equivalent moiré superstructures with
ϕmod = ϕ+ n · 60◦ (n = 1, 2, . . . , 5), which reproduce the same observable moiré characteristics
for varying kC. (b) Twisted bilayer graphene (BLG) model. Lines depict the calculated moiré
spatial period δ as a function of the angle % enclosed by crystallographic directions of the upper
graphene lattice and the moiré superstructure. The solid line shows the variation of δ with |%| for
an unstrained lower graphene sheet, whereas dotted and dashed lines represent the situation for
a graphene lattice constant that is increased and decreased by 2 %, respectively. Experimental
data appear as circles (this work) and squares (BLG/Ir(111))2. The angles 0◦ . . . 25◦ denote the
twist angles between the bottom and upper graphene sheets.

2



Characterization of the bottom graphene layer in bilayer graphene domains

An important conclusion of the findings presented in the main manuscript is the origin of the
moiré pattern observed from bilayer graphene (BLG) domains. The results evidence that the
moiré superstructure is caused by the interface beween the bottom graphene layer and Pt(111).
Using the moiré characteristics observed from BLG (BLGα, BLGβ in Fig. 2e), the spatial period
and orientation of the bottom graphene layer may be deduced as follows. Given the spatial
moiré period δ and its orientation ϕ with respect to the Pt(111) lattice, six moiré orientations
defined by ϕmod in Fig. S1a are indistinguishable in the experiments. These orientations differ
by 60◦. Free parameters are the unknown orientation of the bottom graphene layer, ϑb, and its
lattice constant, aC, which may be affected by strain. The solutions with minimal strain are
considered most plausible and can be obtained by calculating aC for every ϕmod,

aC =

√
1

a2Pt
+

1

δ2
+

2 cosϕmod

aPt · δ

−1

. (S3)

Subsequently, ϑb is calculated for the selected amin
C with minimal strain at the angle ϕmin

mod using

δ sinϑb = amin
C sinϕmin

mod. (S4)

Following this procedure, the bottom graphene sheets of the observed BLG domains are cha-
racterised by ϑb = 4.6◦ with aC = 240 pm (−2.5 % strain) in the case of BLGα and ϑb = 0.1◦

with aC = 252 pm (2.1 % strain) in the BLGβ domain. Consequently, the twist angles θ between
adjacent graphene layers may now be obtained as θ = 22.6◦, 13.4◦ for BLGα and θ = 12.6◦,
18.1◦ for BLGβ subdomains.

Moiré patterns of twisted bilayer graphene

The moiré pattern generated by twisted BLG can be calculated using Eq. S2 with aPt replaced
by aC. Thus, the spatial period of a moiré pattern resulting from two unstrained graphene
lattices is described by

δ =
aC√

2(1− cos θ)
. (S5)

Assuming that the twist angle between bottom (b) and top (t) graphene sheets causes the
observed moiré pattern, b-graphene may be characterised on the basis of this moiré pattern. To
this end, t-graphene takes the role of the Pt lattice in Eqs. S3, S4 with known lattice constant
aC,t and as a reference lattice for all angles. The lattice constant aC,b of the lower graphene is
described by

aC,b =

√
1

a2C,t

+
1

δ2
+

2 cos %mod

aC,t · δ
(S6)

for each of the six possible orientations defined by %mod, which describes the angle enclosed by
the moiré superstructure and t-graphene. The twist angle θ between the two graphene sheets is
then given by

δ sin θ = amin
C,b sin %min

mod. (S7)

Figure S1b shows BLG data obtained in this work as well as from a recent study of BLG
on Ir(111), where the observed moiré patterns were attributed to twisted graphene bilayers2.
While data for larger twist angles (> 13◦) follow the expected behaviour for pristine BLG
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reasonably well, there is a notable deviation at smaller rotation angles. Indeed, the BLG0◦

moiré superstructure is virtually that of the underlying graphene/substrate interface. Density
functional calculations2 showed that low twist angles give rise to an elevated graphene-metal
coupling, which is consistent with the mechanism discussed in the main manuscript. In the
twisted-BLG model, the BLGα subdomains (Fig. 3c,d) would require comparably large strains of
3.5 % and 4.2 %, but the BLGβ subdomains would exhibit only 1.6 % and 2.3 % strain. However,
the resulting moiré patterns of the subdomains would have to align in order to reproduce the
experimental observations. Therefore, the twisted-BLG model is not appropriate to explain the
observed moiré structures.
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