Designing and characterization of novel polymorphs of single-layered Tin-Sulfide for direction-dependent thermoelectric applications using firstprinciples approaches

Bakhtiar Ul Haq1*, S. AlFaify1, and A. Laref2

¹Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia. ²Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 King Saudi Arabia

Corresponding Authors: Email: *bakhtiarjadoon@gmail.com(Bakhtiar Ul Haq);

The SnS monolayers particularly the α -SnS, γ -SnS, and ϵ -SnS possess a high degree of anisotropy in structures. The estimated structural anisotropy in α -SnS, β -SnS, γ -SnS, δ -SnS, and ϵ -SnS magnitude 0.098, 0, 0.24, 0.007, and 0.36 respectively.

Figure S1. The electronic band structures determined with TB-mBJ potential along 100-direction (*x*- axis) and the 010-direction (*y*- axis) for α -, β -, γ -, δ - and ϵ - types of SnS monolayer.

Figure S2. The electronic band structures determined with TB-mBJ+SOC along 100-direction (*x*-axis) and the 010-direction (*y*-axis) for α -, β -, γ -, δ - and ϵ - types of SnS monolayer.

Figure S3. The dependence of *x*- and *y*- components thermal conductivity with respect to relaxation time (κ/τ) of SnS monolayers on the carrier's concentration