Supporting information

Thermal stability of *p*-type Ag-doped Mg₃Sb₂ thermoelectric materials

investigated by powder X-ray Diffraction

Lirong Song^a, Jiawei Zhang^a, and Bo B. Iversen^{a,*}

^aCenter for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus, Denmark.

*Corresponding author. E-mail address: <u>bo@chem.au.dk</u>

<i>Т</i> (К)	<i>T</i> (K)_heating 303-1 398-1		498-1	598-1	698-1	
t _e	_{xp.} (min)	52	52	52	52	52
No.	of points	6573	6573	6573	6573	6573
No. of	reflections	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
(1	/lg ₃ Sb ₂)	69	69	69	69	00
No. of	parameters	26	29	32	29	32
R _f (Mg ₃ Sb ₂) (%)		6.06	6.41	6.46	8.04	8.46
R_{Bragg} (Mg ₃ Sb ₂) (%)		9.95	10.2	10.3	12.6	15.6
	R _p (%)	19.8	20.1	19.4	19.9	21.2
F	R _{wp} (%)	24.5	25.2	23.6	23.3	24.0
	χ ²	47.2	25.2	19.9	19.9	20.3
Wt.	% Mg ₃ Sb ₂	99.42(0.83)	99.26(0.87)	98.60(0.76)	97.87(0.76)	97.17(0.78)
v	/t.% Sb	0.58(0.09)	0.74(0.09)	1.40(0.07)	2.13(0.07)	2.83(0.07)
	a=b (Å)	4.56882(16)	4.57552(17)	4.57790(13)	4.58171(11)	4.58596(10)
Mg ₃ Sb ₂	<i>c</i> (Å)	7.23568(29)	7.24843(30)	7.25668(23)	7.26656(20)	7.27658(17)
	Volume (Å ³)	130.803(8)	131.418(9)	131.705(7)	132.103(6)	132.531(5)

Table S1. Rietveld refinement details of in-house *in situ* PXRD data for the as-pressed pellet 1 in two cycles of heating and cooling.

T(K)_cooling	598-2	498-2	398-2	343-2	
t _{exp.} (min)	52	52	52	52	
No. of points	6573	6573	6573	6573	
No. of reflections	66	6E	6E	6E	
(Mg ₃ Sb ₂)	00	05	05	05	
No. of parameters	30	29	37	29	
<i>R</i> _f (Mg ₃ Sb ₂) (%)	8.19	8.52	8.46	8.77	
R_{Bragg} (Mg ₃ Sb ₂) (%)	13.6	13.8	12.9	14.2	
R _p (%)	21.3	20.9	19.9	20.8	

R _{wp} (%)		24.4	24.3	23.7	24.5
χ ²		22.0	23.2	24.1	26.1
Wt.% Mg ₃ Sb ₂		96.46(0.78)	96.45(0.77)	95.43(0.76)	96.39(0.78)
N	/t.% Sb	3.54(0.08)	3.55(0.08)	4.57(0.10)	3.61(0.09)
	a=b (Å)	4.57982 (9)	4.57373(9)	4.56788(9)	4.56435(9)
Mg ₃ Sb ₂	<i>c</i> (Å)	7.26490(17)	7.25301(17)	7.24161(17)	7.23494(16)
	Volume (Å ³)	131.964(5)	131.398(5)	130.857(5)	130.534(5)

<i>T</i> (K)	_heating	398-3	498-3	598-3	698-3
t _{ex}	_{.p.} (min)	52	52	52	52
No.	of points	6573	6573	6573	6573
No. of	reflections	65	66	65	66
(№	1g ₃ Sb ₂)				
No. of	parameters	39	30	33	31
R _f (M	g ₃ Sb ₂) (%)	8.20	8.51	7.94	8.60
R_{Bragg} (Mg ₃ Sb ₂) (%)		12.9	14.2	13.4	14.3
R _p (%)		19.8	21.4	21.2	21.1
R	wp (%)	23.5	24.8	24.3	23.9
	χ ²	24.1	24.3	22.5	21.0
Wt.9	% Mg ₃ Sb ₂	95.44(0.75)	96.40(0.79)	96.54(0.78)	96.73(0.77)
w	′t.% Sb	4.56(0.10)	3.60(0.09)	3.46(0.08)	3.27(0.08)
	a=b (Å)	4.56781(9)	4.57394(9)	4.58002(9)	4.58569(9)
Ma Sh	<i>c</i> (Å)	7.24151(16)	7.25347(17)	7.26492(16)	7.27624(16)
Mg_3Sb_2	Volume (ų)	130.851(5)	131.419(5)	131.976(5)	132.510(5)

		500.4	100.1	200.4	202.4
/(K)_COOIIng		598-4	498-4	398-4	303-4
t _e ,	_{ւթ.} (min)	52	52	52	52
No.	of points	6573	6573	6573	6573
No. of	reflections	6F	65	6F	65
(N	1g ₃ Sb ₂)	60	60	60	60
No. of	parameters	29	32	38	38
R _f (Mg ₃ Sb ₂) (%)		8.21	8.43	8.51	8.65
R _{Bragg} (Mg ₃ Sb ₂) (%)		13.6	14.8	13.2	14.1
R _p (%)		21.5	21.6	20.4	21.9
R	wp (%)	24.7	24.9	24.1	25.6
	χ ²	23.1	24.6	25.5	29.0
Wt.9	% Mg ₃ Sb ₂	96.28(0.78)	96.26(0.80)	95.18(0.77)	95.91(0.82)
N	/t.% Sb	3.72(0.08)	3.74(0.09)	4.82(0.11)	4.09(0.10)
	a=b (Å)	4.57970(9)	4.57362(9)	4.56768(9)	4.56080(9)
Ma Sh	<i>c</i> (Å)	7.26473(17)	7.25281(17)	7.24141(17)	7.22834(17)
10183202	Volume	121 OF //F)	101 000(E)	120 941(E)	120 212(E)
	(ų)	131.954(5)	131.300(2)	130.841(3)	130.212(3)

Т(К)_	heating	303-1	398-1	498-1	598-1	698-1	723-1
t _{exp}	. (min)	52	52	52	52	52	52
No. c	of points	6573	6573	6573	6573	6573	6573
No. of reflections		69	71	69	69	69	69
No. of p	arameters	27	23	27	27	30	27
R _f (Mg	g ₃ Sb ₂) (%)	5.79	6.83	5.76	6.58	6.84	6.94
R _{Bragg} (N	/lg ₃ Sb ₂) (%)	11.1	16.9	10.9	11.8	11.9	12.2
R	R _p (%)		17.3	17.5	18.5	19.1	19.0
R _{wp} (%)		20.5	20.6	21.0	21.9	22.4	22.3
	χ ²	14.6	14.8	15.0	14.7	15.6	15.3
Wt.%	Mg ₃ Sb ₂	99.35(0.46)	99.38(0.46)	99.13(0.46)	97.67(0.69)	97.16(0.72)	97.01(0.71)
W	t.% Sb	0.65(0.04)	0.62(0.04)	0.87(0.05)	2.33(0.07)	2.84(0.07)	2.99(0.07)
	a-b (Å)	4.55838	4.56308	4.56719	4.57193	4.57669	4.57782
	<i>u=D</i> (A)	(11)	(11)	(11)	(10)	(9)	(9)
Ma Sh	c (Å)	7.22769	7.23736	7.24531	7.25388	7.26312	7.26539
1V1g35D2	C (A)	(22)	(22)	(21)	(18)	(17)	(17)
	Volume (ų)	130.062(6)	130.505(6)	130.884(6)	131.310(5)	131.752(5)	131.858(5)

Table S2. Rietveld refinement details of in-house *in situ* PXRD data for the powdered sample (from pellet 2) in two cycles of heating and cooling.

T(K)_cooling		698-2	598-2	498-2	343-2
te	_{exp.} (min)	52	52	52	52
No.	of points	6573	6573	6573	6573
No. o	f reflections	69	69	67	67
1)	Mg ₃ Sb ₂)			07	07
No. of	parameters	31	29	31	30
R _f (Mg ₃ Sb ₂) (%)		7.05	6.82	6.80	7.09
R _{Bragg} (Mg ₃ Sb ₂) (%)		12.1	12.2	11.6	12.4
	R _p (%)	18.7	18.7	18.1	18.0
	R _{wp} (%)	22.1	21.7	21.5	21.2
	χ ²	15.0	15.4	15.5	16.2
Wt.	% Mg ₃ Sb ₂	97.00(0.71)	96.83(0.69)	96.85(0.69)	96.37(0.45)
v	Vt.% Sb	3.00(0.07)	3.17(0.07)	3.15(0.07)	3.63(0.08)
	a=b (Å)	4.57702(9)	4.57235(8)	4.56765(8)	4.56051(8)
Mg ₃ Sb ₂	<i>c</i> (Å)	7.26368(16)	7.25387(15)	7.24477(15)	7.23027(15)
	Volume (Å ³)	131.781(5)	131.335(4)	130.900(4)	130.230(4)

T(K)_heating 398-3	498-3	598-3	698-3	723-3
--------------------	-------	-------	-------	-------

t _e ,	_{.p.} (min)	52	52	52	52	52
No.	of points	6573	6573	6573	6573	6573
No. of (N	reflections 1g ₃ Sb ₂)	67	67	69	69	69
No. of	parameters	34	27	32	32	32
R _f (M	g ₃ Sb ₂) (%)	6.87	7.08	6.50	6.82	7.38
R _{Bragg} (I	Mg ₃ Sb ₂) (%)	12.4	12.5	11.3	11.6	12.8
ŀ	R _p (%)	18.1	18.7	18.2	18.6	19.0
R	_{wp} (%)	21.3	22.1	21.5	21.9	22.2
	χ ²	15.7	16.1	14.6	14.5	14.8
Wt.9	% Mg₃Sb₂	96.18(0.44)	96.82(0.70)	96.92(0.68)	96.97(0.70)	96.93(0.71)
w	't.% Sb	3.82(0.08)	3.18(0.07)	3.08(0.07)	3.03(0.07)	3.07(0.07)
	a=b (Å)	4.56329(8)	4.56756(8)	4.57224(8)	4.57705(9)	4.57814(8)
Mash	<i>c</i> (Å)	7.23555(15)	7.24504(16)	7.25397(15)	7.26375(16)	7.26556(16)
Mg ₃ Sb ₂	Volume (ų)	130.484(4)	130.900(4)	131.330(4)	131.784(5)	131.880(4)

<i>Т</i> (К)_cooling	698-4	598-4	498-4	398-4	308-4
t _e	_{xp.} (min)	52	52	52	52	52
No.	of points	6573	6573	6573	6573	6573
No. of	f reflections	60	60	67	66	66
۹)	Mg ₃ Sb ₂)	09	09	07	00	00
No. of	parameters	30	30	29	29	29
R _f (Mg ₃ Sb ₂) (%)		6.87	7.27	7.03	7.15	7.47
R _{Bragg} (Mg ₃ Sb ₂) (%)		11.7	12.6	12.6	12.6	13.2
	R _p (%)	18.6	19.1	18.7	18.5	18.7
F	R _{wp} (%)	21.8	22.2	21.8	21.4	22.2
	χ²	14.3	15.3	15.4	15.5	16.2
Wt.	% Mg ₃ Sb ₂	96.70(0.70)	96.66(0.71)	96.50(0.69)	95.88(0.45)	96.62(0.46)
v	Vt.% Sb	3.30(0.07)	3.34(0.07)	3.50(0.08)	4.12(0.09)	3.38(0.07)
	a=b (Å)	4.57725(8)	4.57250(8)	4.56795(8)	4.56337(8)	4.55886(8)
Mg ₃ Sb ₂	<i>c</i> (Å)	7.26369(15)	7.25430(15)	7.24469(15)	7.23568(14)	7.22714(15)
	Volume (Å ³)	131.794(4)	131.351(4)	130.916(4)	130.491(4)	130.080(4)

Table S3. Rietveld refinement details of PXRD data at room temperature for pellet 1.

<i>T</i> (K)_@RT	before in situ	after in situ	after Hall	after Seebeck
t _{exp.} (min)	52	52	52	52
No. of points	6573	6573	6573	6573
No. of reflections	60	65	96	96
(Mg ₃ Sb ₂)	69	CO	80	80
No. of parameters	26	38	44	41
$R_{\rm f}$ (Mg ₃ Sb ₂) (%)	6.06	8.65	10.1	9.22

R_{Bragg} (Mg ₃ Sb ₂) (%)		9.95	14.1	16.8	16.5
R _p (%)		19.8	21.9	24.2	23.2
R _{wp} (%)		24.5	25.6	29.1	29.1
χ ²		47.2	29.0	57.8	52.8
Wt.	% Mg ₃ Sb ₂	99.42(0.83)	95.91(0.82)	97.05(0.84)	96.69(0.83)
v	Vt.% Sb	0.58(0.09)	4.09(0.10)	2.95(0.10)	3.31(0.10)
	a=b (Å)	4.56882(16)	4.56080(9)	4.56640(4)	4.56610(5)
Mg ₃ Sb ₂	<i>c</i> (Å)	7.23568(29)	7.22834(17)	7.23878(8)	7.23773(9)
	Volume (Å ³)	130.803(8)	130.212(5)	130.720(2)	130.684(2)

Table S4. Rietveld refinement details of multi-temperature synchrotron PXRD data for thepowdered sample (from pellet 2) before in-house powder *in situ* PXRD measurements.

<i>Т</i> (К)_	heati	ng	300	400	500	600	650	700	730	
t _{ex}	₀.(min)		5	5	5	5	5	5	5	
No. (of poir	nts	7728	7728	7727	7727	7726	7726	7726	
No. of (M	reflect	ions	1024	1044	972	957	972	967	948	
No. of p	baram	eters	58	50	44	55	52	56	59	
R _f (M	g ₃ Sb ₂)	(%)	1.97	2.65	3.84	4.59	4.34	6.56	7.47	
R _{Bragg} (N	∕lg₃Sb₂	<u>a</u>) (%)	6.00	16.4	6.35	3.92	3.60	8.28	9.80	
R	° _p (%)		8.12	8.71	9.93	11.3	11.7	11.6	10.6	
R	_{vp} (%)		11.0	11.4	12.4	13.5	13.5	13.0	11.9	
	χ ²		6.18	6.41	7.20	8.24	8.17	7.47	6.24	
144.0		·1-	95.43	93.44	90.68	88.04	86.13	84.23	84.49	
VVt.%	Wt.% Mg ₃ Sb ₂		(1.20)	(1.21)	(1.20)	(1.26)	(1.23)	(1.17)	(1.08)	
	Wt.% Sb		1.27	1.72	4.11	5.79	7.01	8.18	9.06	
			(0.04)	(0.05)	(0.06)	(0.07)	(0.08)	(0.09)	(0.09)	
14/4	0/ 1.4~	2	3.30	4.84	5.21	6.18	6.86	7.59	6.45	
vvt.	% ivigi	J	(0.13)	(0.15)	(0.16)	(0.19)	(0.20)	(0.20)	(0.17)	
	~-	۲ ۲	4.56449	4.57289	4.58097	4.58903	4.59316	4.59687	4.59892	
	<i>u=</i>	0 (A)	(9)	(9)	(8)	(7)	(5)	(5)	(4)	
		(Å)	7.23590	7.25312	7.26843	7.28431	7.29243	7.30006	7.30448	
	Ĺ	(A)	(16)	(16)	(13)	(13)	(10)	(9)	(7)	
	Vo	lume	130.559	131.352	132.095	132.850	133.238	133.592	133.792	
Mach	(.	ų)	(5)	(5)	(4)	(4)	(3)	(2)	(2)	
IVIg3502		Mal	0.948	0.757	1.468	1.991	2.405	3.122	3.356	
		IVIGT	(152)	(153)	(156)	(174)	(187)	(199)	(187)	
		Ma2	0.787	1.418	1.846	2.492	2.801	2.936	3.033	
	Diso	IVIGZ	(73)	(83)	(85)	(99)	(104)	(104)	(95)	
		Sh1	0.723	1.033	1.524	1.967	2.012	2.266	2.503	
			201	(16)	(19)	(19)	(23)	(24)	(23)	(22)

<i>Т</i> (К)_coolin	g	700	600	500	400	300
t _e	_{xp.} (min)		5	5	5	5	5
No. of points		ts	7725	7725	7725	7724	7724
No. of reflections (Mg ₃ Sb ₂)		ons	957	933	931	9202	916
No. of	parame	eters	50	48	49	44	49
R _f (N	1g ₃ Sb ₂) (%)	6.43	5.45	4.00	3.55	2.29
R _{Bragg} (Mg ₃ Sb ₂) (%)) (%)	6.42	7.27	4.51	5.04	5.55
R _p (%)		11.0	10.6	10.7	10.3	8.93	
R _{wp} (%)		12.6	12.2	12.3	12.2	11.2	
χ ²		8.14	8.84	9.33	10.5	8.83	
Wt.	% Mg₃Sl	0 ₂	84.01(1.21)	83.62(1.18)	82.69(1.14)	82.98(1.14)	83.88(0.99)
v	Vt.% Sb		9.69(0.11)	9.67(0.10)	9.46(0.10)	9.56(0.10)	9.31(0.09)
Wi	t.% MgC)	6.30(0.18)	6.70(0.19)	7.85(0.20)	7.46(0.20)	6.82(0.16)
	a=b) (Å)	4.59658(4)	4.58861(4)	4.58056(4)	4.57224(4)	4.56360(3)
	c ((Å)	7.29955(8)	7.28311(8)	7.26691(7)	7.25031(7)	7.23316(6)
Ma Ch	Volum	ne (ų)	133.566(2)	132.803(2)	132.044(2)	131.264(2)	130.459(2)
1V1g32D2		Mg1	3.547(211)	2.980(192)	2.141(161)	1.763(152)	1.065(112)
	B _{iso}	Mg2	2.437(100)	2.235(92)	1.817(84)	1.364(75)	0.968(57)
		Sb1	2.357(23)	1.994(21)	1.536(18)	1.131(16)	0.718(11)

Table S5. Rietveld refinement details of multi-temperature synchrotron PXRD data for thepowdered sample (from pellet 2) after in-house powder *in situ* PXRD measurements.

T(K)_heating	300	400	500	600	650	700	730
t _{exp.} (min)	5	5	5	5	5	5	5
No. of points	7727	7727	7727	7727	7727	7727	7726
No. of reflections (Mg ₃ Sb ₂)	924	936	993	955	967	946	944
No. of parameters	56	54	51	44	51	52	50
<i>R</i> _f (Mg ₃ Sb ₂) (%)	3.56	4.21	3.53	5.91	5.58	8.99	8.67
R _{Bragg} (Mg ₃ Sb ₂) (%)	13.7	10.9	7.81	14.5	12.5	9.01	7.91
R _p (%)	9.60	10.0	12.2	10.9	11.4	11.2	11.2
R _{wp} (%)	12.1	12.3	14.6	12.7	13.1	12.8	12.5
χ ²	9.16	8.87	10.8	8.40	8.75	8.27	8.00
W/+ 9/ Ma Sh	90.32	90.46	89.82	89.33	88.85	86.59	84.28
VV1.70 IVIB35D2	(1.26)	(1.30)	(1.50)	(1.32)	(1.35)	(1.31)	(1.25)
14/t % Sh	5.53	5.69	6.04	5.89	6.60	7.93	9.58
vvi. % SD	(0.07)	(0.07)	(0.09)	(0.08)	(0.09)	(0.10)	(0.11)

14/+	Wt.% MgO		4.14	3.84	4.15	4.77	4.55	5.48	6.14
VVI			(0.16)	(0.16)	(0.19)	(0.18)	(0.20)	(0.21)	(0.21)
	a-1	۵ (Å)	4.56488	4.57320	4.58143	4.58914	4.59311	4.59671	4.59898
	<i>u</i> - <i>k</i>) (A)	(4)	(5)	(6)	(5)	(5)	(5)	(4)
		(گ)	7.23518	7.25180	7.26809	7.28388	7.29200	7.29961	7.30437
	Ĺ	(A)	(8)	(9)	(11)	10)	(10)	(9)	(8)
	Volur	no (Å3)	130.568	131.346	132.115	132.848	133.226	133.575	133.794
Mash	volui	ne (A ⁻)	(2)	(2)	(3)	(3)	(3)	(3)	(2)
101g3502		Mat	1.070	1.370	1.620	2.893	2.649	3.235	3.537
		Mg1	(131)	(150)	(196)	(197)	(206)	(218)	(226)
	р	Maa	0.876	1.331	1.288	2.103	2.254	2.563	2.790
	Diso	IVIGZ	(67)	(77)	(98)	(95)	(103)	(109)	(108)
		CL 1	0.712	1.117	1.292	1.900	2.068	2.379	2.506
		201	(13)	(17)	(22)	(22)	(24)	(25)	(25)

<i>Т</i> (К)_coolin	g	700	600	500	400	300
t _e	_{xp.} (min)		5	5	5	5	5
No.	of point	ts	7726	7726	7726	7726	7726
No. of (N	No. of reflections (Mg ₃ Sb ₂)		938	933	922	918	916
No. of	parame	ters	49	50	48	41	54
R _f (№	1g ₃ Sb ₂) (%)	7.05	5.48	4.34	4.45	2.44
R _{Bragg} (Mg ₃ Sb ₂	(%)	6.23	5.55	5.22	4.96	6.26
R _p (%)		11.2	11.0	10.6	10.4	9.57	
R _{wp} (%)		12.6	12.8	12.4	12.2	11.7	
χ ²		8.31	9.02	9.24	10.0	10.3	
Wt.	% Mg₃Sl	0 ₂	82.30(1.21)	82.87(1.22)	82.95(1.18)	83.08(1.17)	84.21(1.14)
v	Vt.% Sb		10.01(0.11)	9.90(0.11)	9.89(0.11)	9.95(0.11)	10.01(0.10)
W	t.% MgC)	7.69(0.23)	7.23(0.21)	7.15(0.21)	6.98(0.20)	5.78(0.19)
	a=b) (Å)	4.59654(4)	4.58875(4)	4.58068(4)	4.57246(4)	4.56401(3)
	с (Å)	7.29940(8)	7.28328(8)	7.26703(7)	7.25059(7)	7.23367(7)
	Volum	ne (ų)	133.561(2)	132.814(2)	132.053(2)	131.282(2)	130.492(2)
IVIB32D2		Mg1	3.486(217)	3.200(200)	2.709(180)	1.771(151)	1.214(132)
	B _{iso}	Mg2	2.703(107)	2.241(98)	1.729(86)	1.400(77)	0.930(66)
		Sb1	2.366(24)	1.955(22)	1.532(19)	1.111(16)	0.734(13)

Table	S6.	Rietveld	refinement	details	of	synchrotron	PXRD	data	at	300	Κ	for	the	powdered
sampl	e (fr	om the as	s-synthesized	l pellet	5).									

τ(ν)	200 start	300-	300-
	300-Start	cooling1	cooling2
t _{exp.} (min)	5	5	5
No. of points	7740	7732	7729

No. of	reflecti	ons	057	904	904
(∿	1g ₃ Sb ₂)		337	504	504
No. of	parame	ters	46 53		51
R _f (M	g ₃ Sb ₂) (%)	2.13	1.91	1.99
R _{Bragg} (I	Mg₃Sb₂)	(%)	11.1	5.28	4.86
ŀ	R _p (%)		8.20	9.61	9.61
R	_{wp} (%)		10.8	12.0	12.0
χ ²			6.86	9.69	10.6
Wt.% Mg ₃ Sb ₂			96.53(1.23)	90.60(1.19)	90.29(1.21)
w	't.% Sb		0.39(0.04)	5.85(0.07)	6.14(0.07)
Wt	.% MgO		3.08(0.14)	3.55(0.15)	3.57(0.15)
	a=b	(Å)	4.56310(10)	4.56469(7)	4.56471(6)
	с (Å)	7.23403(18)	7.23663(12)	7.23679(11)
Ma Ch	Volum	ne (ų)	130.446(5)	130.584(3)	130.588(3)
IVIB32D2		Mg1	0.607(148)	1.103(127)	1.045(129)
	B _{iso}	Mg2	0.676(71)	6(71) 0.982(64) 0.	
		Sb1	0.624(16)	0.753(13)	0.728(13)

Table S7. Rietveld refinement details of in-house *in situ* PXRD data after cooling down to RT for the powdered samples (from pellets 5 and 6).

5	Sample	Powdered sample (from pellet 5)	Powdered sample (from pellet 6)		
	<i>Т</i> (К)	308	308		
te	_{xp.} (min)	30	30		
No.	of points	8995	8995		
No. o	f reflections	50	50		
1)	Mg ₃ Sb ₂)	סכ	58		
No. of	parameters	8	8		
<i>R</i> _f (Mg ₃ Sb ₂) (%)		9.21	13.2		
R _{Bragg}	(Mg ₃ Sb ₂) (%)	9.79	14.1		
	R _p (%)	25.1	29.4		
	R _{wp} (%)	32.3	44.2		
	χ²	17.9	35.7		
Wt.	% Mg ₃ Sb ₂	97.46(0.85)	98.89(1.17)		
V	Vt.% Sb	2.54(0.08)	1.11(0.09)		
	a=b (Å)	4.55827(10)	4.55876(13)		
Mg ₃ Sb ₂	<i>c</i> (Å)	7.22620(20)	7.22614(28)		
	Volume (Å ³)	130.029(6)	130.056(7)		

Table S8. The nominal and actual compositions measured by SEM-EDS for the pellets 2 and 4. As the Ag doping content is close to the detection limit of SEM-EDS, only the actual compositions of Mg and Sb can be used for discussion. For major components (Mg and Sb), the combined errors

of SEM-EDS also limit the precision of the analysis results to ± 2 %. As can be seen in this table, there are no significant differences in the compositions of Mg and Sb among the EDS measurements, suggesting that the sample compositions are not changed after heat treatment.

Compositions (at.%)			Pellet 2 (as-	Pellet 2 (after Hall	Pellet 2 (after Hall measurements	Pel (as-synt	Pellet 4 (as-synthesized)		Pellet 4 (after heat treatment)				
			synthesized)	measurements)	& surface polished)	Тор	Bottom	Тор	Bottom				
		Mg		59.7									
NO (Ma	minal	Sb		40									
(IVI <u>8</u> 2.985	Ag _{0.015} SD ₂)	Ag	0.3										
		Mg	52.49	53.54	51.04	54.05	54.16	54.30	55.08				
	Region 1	Sb	47.00	45.66	48.46	45.41	45.25	44.94	44.33				
		Ag	0.51	0.80	0.50	0.55	0.59	0.76	0.59				
		Mg	52.41	53.79	51.34	51.99	53.25	53.78	54.42				
	Region 2	Sb	47.12	45.36	48.00	47.25	46.29	45.64	44.84				
		Ag	0.47	0.85	0.65	0.75	0.46	0.58	0.74				
	Region 3	Mg	52.15	54.51	51.41	52.31	53.38	54.51	55.20				
		Sb	47.28	44.75	48.09	47.16	46.03	44.84	44.21				
Actual		Ag	0.57	0.74	0.50	0.53	0.59	0.65	0.59				
Actual		Mg	52.75	53.18	51.97	52.30	52.89	54.18	55.11				
	Region 4	Sb	46.80	45.81	47.56	47.30	46.60	45.19	44.29				
		Ag	0.45	1.01	0.47	0.40	0.51	0.63	0.60				
		Mg	52.13	53.47	51.06	52.58	52.80	54.11	55.52				
	Region 5	Sb	47.48	45.67	48.29	46.96	46.63	45.29	43.90				
		Ag	0.39	0.87	0.66	0.46	0.57	0.60	0.58				
		Mg	52.39	53.70	51.36	52.65	53.30	54.18	55.07				
	Average	Sb	47.14	45.45	48.08	46.82	46.16	45.18	44.31				
		Ag	0.48	0.85	0.56	0.54	0.54	0.64	0.62				

Table S9. The nominal and actual compositions measured by SEM-EDS for pellet 5 after in-house *in situ* PXRD measurements.

Com	npositions (at.)	Top side of $Mg_{3.5}Sb_2$ pellet	
Nominal	(Ma Sh)	Mg	63.64
Nominal	(10183.5302)	Sb	36.36
	Pogion 1	Mg	55.19
	Region I	Sb	44.81
	Region 2	Mg	56.58
	Region 2	Sb	43.42
	Region 3	Mg	56.04
	Region 5	Sb	43.96
Actual	Pogion 4	Mg	56.24
Actual	Kegioli 4	Sb	43.76
	Pogion 5	Mg	56.73
	Region 5	Sb	43.27
	Pogion 6	Mg	56.48
	Negion 6	Sb	43.52
	Avorago	Mg	56.21
	Average	Sb	43.79

Fig. S1. Seebeck coefficient map and histogram from a PSM scan over the cross section of the assynthesized pellet 2.

Fig. S2. SEM images of the surface (pellet 2): (a) without heat history, (b) after Hall measurements (the surface was not polished) and (c) after Hall measurements (the surface was polished).

Fig. S3. (a) Temperature dependent Hall carrier concentration and Hall mobility for the total 10 cycles. (b) and (c) show the temperature dependence of Hall carrier concentration and Hall mobility in the first two cycles, respectively.

Fig. S4. (a) Multi-temperature synchrotron PXRD patterns, (b) the calculated and observed diffraction patterns at 300 K, (c) weight fractions of the Mg_3Sb_2 , Sb and MgO phases, and (d) unit cell parameters of the Mg_3Sb_2 phase for the powdered sample (from pellet 2) after in-house powder *in situ* PXRD measurements. In (c) and (d), the error bars are smaller than the symbols.

Fig. S5. TG data for the powdered samples (a) from pellet 2 before heat treatment and (b) from pellet 3 after all the HT thermoelectric properties measurements.