Electronic Supplementary Information

Photoinduced Electron Transfer in the 5-Bromouracil Labeled DNA.

Contrathermodynamic Mechanism Revisited by Electron Transfer Theories⁺

Lorenzo Cupellini,‡#^a Paweł Wityk,‡^{bc} Benedetta Mennucci,*^a Janusz Rak*^b

^aDipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy. E-mail: benedetta.mennucci@unipi.it

^bUniversity of Gdańsk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland. E-mail: janusz.rak@ug.edu.pl

^eGdańsk Univeristy of Technology, Faculty of Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland. [†] Electronic supplementary information (ESI) available: ET parameters calculated at BPE0 and CAM-B3LYP, evaluation of experimental charge separation rates, stability of MD simulations in terms of the variability of inter-base pair parameters.

[‡]These authors contributed equally.

[#]Current address: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.

Table S1. Parameters of electron transfer reactions: V_{DA} – electronic coupling, λ – sum of internal and outer reorganization energy, λ_s – outer (solvent) reorganization energy, λ_i – internal reorganization energy ΔE – electron transfer energy (driving force) for separated donor and acceptor , ΔE_{si} – donor-acceptor self-interaction energy, ΔE_t – sum of ΔE and ΔE_{si} , k_M - ET rate calculated according to the Marcus-Levich-Jortner model, k_{MLJ} - ET rate calculated according to the Marcus theory; ν , λ_s , λ_i , λ , ΔE , ΔE_{si} , ΔE_t in cm⁻¹; k_M , k_{MLJ} in s⁻¹. Temperature = 300 K.

ET process	Computational Model	Vda	λ_s	λi	λ	ΔΕ	ΔE_{si}	ΔEt	k mlj	kм
$BrU^* + G \rightarrow BrU^- + G^+$	PBE0	570	9240	5555	14795	10880	-11167	-287	1.4×10^{7}	2.4×10^{6}
	CAM-B3LYP	640	8166	5868	14034	12480	-8706	3774	2.8×10^2	1.4×10^{2}
$BrU^{-} + G^{+} \rightarrow BrU + G$	PBE0	870	9020	7046	16066	-49060	10736	-38324	6.4×10^{6}	1.2×10^{-2}
	CAM-B3LYP	1000	8034	8800	16834	-52340	9909	-42431	7.1×10^{3}	9.6×10^{-7}
$BrU^* + A \rightarrow BrU^- + A^+$	PBE0	540	9370	4692	14062	12670	-9088	3582	3.5×10^{2}	1.7×10^{2}
	CAM-B3LYP	720	7950	5047	12997	14616	-8687	5929	2.2×10^{-1}	4.7×10^{-1}
$BrU^{-} + A^{+} \rightarrow BrU + A$	PBE0	890	9130	6182	15312	-50980	8796	-42184	1.0×10^{3}	4.1 × 10 ⁻¹¹
	CAM-B3LYP	1030	7770	7979	15749	-54610	7682	-46928	1.2×10^{0}	1.4×10^{-18}
$A^+ + A \rightarrow A + A^+$	PBE0	620	8949	3354	12303	0	0	0	$9.3 imes 10^7$	3.1×10^{7}
	CAM-B3LYP	407	8970	4146	13116	0	0	0	1.9×10^7	$5.0 imes 10^6$

S1. Evaluation of charge separation rate in the GAAAABrU motif using the experimental data.¹

The number of 320 nm photons absorbed by 5-bromo-2'-deoxyuridine (5BrdU) incorporated into dsDNA per second ($N_{photons}$) can be expressed by the following equation:

$$N_{photons} = \frac{I \cdot t}{(h \cdot c)/lambda} \cdot S \cdot (1 - 10^{-\varepsilon_{320} \cdot con \cdot l}) \cdot \frac{\varepsilon_{BrdU,320}}{\varepsilon_{320}}$$
(S1)

where: I – intensity of incident beam (power per surface), t - time of irradiation, h – Planck's constant, c - velocity of light, *lambda* – wavelength of incident light , S - surface of the cuvette illuminated by the beam, ε_{320} – absorption coefficient of labeled DNA at 320 nm, $\varepsilon_{BrdU,320}$ – absorption coefficient of BrdU at 320 nm, *con* – concentration of the irradiated solution, and l – length of the optical path.

Since SSBs form in the labeled DNA due to electron transfer to the excited BrdU* their rate of formation, v_{SSBs} , is described by: $v_{SSBs} = k_{CS} * [BrdU*]$, where k_{CS} stands for the rate constant of charge separation, while $[BrdU^*]$ for concentration of the excited BrdU. Thus, the quantum yield of SSBs formation (φ_{SSBs}) can be expressed by:

$$\varphi_{SSBs} = \frac{k_{CS} \cdot [BrdU^*]}{N_{photons}} \tag{S2}$$

In a stationary state the number of absorbed by BrdU photons (that generate the excited BrdU) must be equal to the total rate of BrdU* decay on all possible ways. Hence:

$$N_{photons} = k_{rel} \cdot [BrdU^*] + k_{CS} \cdot [BrdU^*]$$
(S3)

where k_{rel} indicates sum of rates of radiation and radiation-less relaxation to the BrdU ground state (k_{rel} is a reverse of the average life time of the excited BrdU). Combining eqs. S2 and S3 one obtains the formulae which allows k_{cs} to be calculated if the yield of SSBs formation and k_{rel} are known:

$$k_{cs} = \frac{\varphi_{SSBs} \cdot k_{rel}}{1 - \varphi_{SSBs}} \tag{S4}$$

Using the values of experimental parameters: $I = 5 \text{ mW/cm}^2$, t = 60 min, $\lambda = 320 \text{ nm}$, $S = 0.03 \text{ cm}^2$, l = 0.3 cm, $\varepsilon_{320} = 8.9 \text{ x} 10^4 \text{ M}^{-1} \text{cm}^{-1}$, $\varepsilon_{BrdU,320} = 4.6 \text{ x} 10^1 \text{ M}^{-1} \text{cm}^{-1}$ as well as assuming $k_{rel} = 2.5 \text{ x} 10^{12} \text{ s}^{-1}$ and the limit of detection in the MS assay of oligonucleotides to be equal to 2 pmol² we obtained $k_{cs} = 1.54 \text{ x} 10^5 \text{ s}^{-1}$. For $k_{CS} \le$ the latter value one cannot detect SSBs in the studied system under the conditions of ref. [1].

S2. Stability of the MD simulations

The stability of the MD simulations was assessed by computing the inter-base pairs parameters along the last 80 ns of each trajectory. These parameters fluctuate around the typical values for B-DNA (see Ref. 32 of the main text), but do not drift with time (Figure S1), demonstrating that our trajectories are stable within the investigated time window.

Figure S1. Inter-base pair parameters for the A/BrU or G/BrU base steps along the last 80 ns of each trajectory. Orange lines refer to the GBrU sequence, whereas blue lines to the ABrU one.

References

1 P. Wityk, M. Zdrowowicz, J. Wiczk, J. Rak, J. Pharm. Biomed. Anal. 2017, 142, 262-269.

2 K. J. Fountain, M. Gilar, J. C. Gebler, Rapid Commun. Mass Spectrom. 2004, 18, 1295-

1302.