
 S-1

Supplementary Information
Competition of individual domain folding with inter-domain interaction in WW

domain engineered repeat proteins
Kapil Dave,† Andrei G. Gasic,† Margaret S. Cheung* and M. Gruebele*

† These authors contributed equally to the work

★Corresponding author emails: mgruebel@illinois.edu; mscheung@uh.edu

SI Contents:

1. Sequences used in the experiments and computational model
2. Additional information on the global fitting model
3. AWSEM additional information and parameter input file
4. Secondary structure prediction from JPRED
5. Mass spectrometry of QFiP35 variants
6. Kinetics traces for MFiP35, TFiP35 and QFiP35_His
7. Complete set of multi-domain model populations
8. Fraction of native state achieved by WW monomer in models I, II and III

1. Sequences used in the experiments and computational model

Table S1. Sequences of FiP35 WW domain oligomer constructs used in this work. Linkers in
bold. The FiP35 sequence is derived from the NCBI reference sequence NP_006212.1.

Fip35 (Monomer)
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG
DFiP35 (Dimer)
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSG
TFiP35 (Trimer)
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT
NASQFERPSG
QFiP35 (tetramer)
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT
NASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG

2. Additional information on the global fitting model

Explanation of parameters in the model
The model parameters mentioned in Methods and in Table 1 in the main text are described below.
The model free energy is given by
 Δ𝐺 = #𝑁{𝑔()(𝑇 − 𝑇-) +𝑚()[𝐺𝑢𝐻𝐶𝑙]} + (S1)
 #𝑀9𝑔(:(𝑇 − 𝑇-)+𝑚(:[𝐺𝑢𝐻𝐶𝑙] + 𝑔(:

(;) < + #𝑈 ∙ 0 (S2)

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2019

 S-2

• Subscripts are: N (folded form); M (misfolded form); U (unfolded form)
• #N, #M and #U equals the number of N, M, and U domains present
• Tm is the melting temperature of native domains in absence of denaturant or intermediates
• gUN is the thermal free energy derivative (folded domain relative to unfolded domain)
• mUN is the corresponding denaturant free energy derivative
• gUM is the thermal free energy derivative (misfolded domain relative to unfolded domain)
• mUM is the corresponding denaturant free energy derivative
• g(0)UM is the free energy of M relative to U at T=Tm and no denaturant

Units are provided in Table 1 of the main text.
The observed fluorescence signals were fitted by assuming a linear baseline for each domain, and
summing over the number of each type (N, M or U) of domain. For example, for the unfolded
domain baseline SU is given by
 𝑆(= 𝑏(+ 𝑎((𝑇 − 𝑇-) (S3)
bU = unfolded intercept (average contribution per monomer to the overall intercept)
aU = unfolded slope (average contribution per monomer to the overall slope)
Similarly the native intercept, baseline and slope are represented with a subscript “N.” We assumed
that the parameters for misfolded domains were the average of unfolded and native domains as
this was sufficient to globally fit all the data essentially within measurement uncertainty and
greatly reduced the model’s flexibility. Finally, the model assumed constant activation barriers
and a constant prefactor (ignoring temperature-dependence of the solvent viscosity):
𝐺)(
C = kinetic barrier going from folded to unfolded, in kJ/mole

𝐺:(
C = kinetic barrier going from intermediate to unfolded, in kJ/mole

In the kinetic model the starting point at t=0 for the experimental data and simulated data was
matched, i.e. we assumed that there was no unresolved an ultra-fast kinetic phase or ‘dead time.’

Matlab code for the free energy of tethered oligomers
Note: The variables g31= gUN, g32= gUM, go32= g(0)UM, gg31= mUN, gg3= mUM, gnn=gmm=0, mu=
aU, mm= aM, mf= aN in the notation at the top of this page.

Function[S,dG,Keq,Si]=ThermoFit(Mer,TotalStates,GHCL,TRange,Tm,g31,g32,go32,gg31,gg3
2,gnn,gmm,bu,mu,bf,mf,bm,mm)
%
NumStates = size(TotalStates,1); % number of all possible species
%%
for p = 1:numel(TRange)35
 T= TRange(p);
 % Signals for individual N, M and U
 Su = bu+mu*(T-Tm)+ 5*(Mer==1)- 4*(Mer==4); %unfolded baseline%%%%%%%
additional 5nm for monomer
 Sf = bf+mf*(T-Tm)+0.5*(Mer==1)- 4*(Mer==4); %folded baseline %%%%%%%%%
additional 1nm for monomer
 Sm = bm+mm*(T-Tm); %misfolded baseline
 % Thermodynamic delta G for transitions
 % Here each of species is a separate state with associated G
 % U/UU/UU/UUUU is the ground/ref state with G ==0
 deltaG = zeros(1,NumStates); % Initialize

 S-3

 for i =1:NumStates % This loop will calculate signal & k_eq for each species coming from
ground species
 howmanyN = numel(find(TotalStates(i,:)==1)); % how many N are there in order to make
signal
 howmanyM = numel(find(TotalStates(i,:)==2)); % how many M are there in order to make
signal
 howmanyU = numel(find(TotalStates(i,:)==3)); % how many U are there in order to make
signal
 Si(p,i) = (howmanyN*Sf+howmanyM*Sm+howmanyU*Su)/Mer; % generate signal for all
the species
 %
 speciesstr = sprintf('%u',TotalStates(i,:)); % change species into a string
 xn = numel(findstr(speciesstr, '11')); % find the pair MM in the species
 xm = numel(findstr(speciesstr, '22')); % find the pair MM in the species
 xu = numel(findstr(speciesstr, '33')); % find the pair MM in the species
 dG(p,i) = howmanyN*(g31*(T-Tm)+ gg31*GHCL + xn*gnn)+ howmanyM*(g32*(T-Tm)+
go32+ gg32*GHCL +xm*gmm) + howmanyU*0;
 Keq(p,i) =exp(-dG(p,i)/8.31/(T+273.15)); % equilibrium rate for all the species i
 end
 S(p,1) = Si(p,:)*Keq(p,:)'/sum(Keq(p,:),2); % generating signal for thermodynamics
end
end

Matlab code for the kinetic representation
function[Chi,Time,Conc,ConcEq,TransMatrix]=KinFit(Mer,TotalStates,GHCL,T,T_fin,...
Tm,g31,g32,go32,gg31,gg32,gnn,gmm,Gk13k,Gk23k,tspan,ExpData)
NumStates = size(TotalStates,1); % number of all possible species
% Calculate the barriers and kinetic parameters
W = 20; % prefactor [1/us]
%% Solve ODE at T = temp
TransMatrix = zeros([NumStates, NumStates]);
% TransMatrix(i,j) is rate of reaction of species i going to species j
for i = 1:NumStates
 howmany(i,1) = numel(find(TotalStates(i,:)==1)); % how many N are there in order to make
signal
 howmany(i,2) = numel(find(TotalStates(i,:)==2)); % how many M are there in order to make
signal
 howmany(i,3) = numel(find(TotalStates(i,:)==3)); % how many U are there in order to make
signal
 for j = 1:NumStates
 speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string
 speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string
 xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective change
in pairs
 xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22'));
 xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33'));
 %% Thermodynamic delta G for transitions
 % G31 is defined outside the for loop as it is NOT dependent on x
 G31 = g31*(T-Tm)+ gg31*GHCL + xn*gnn;

 S-4

 G32 = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x
 %% Remaining kinetics from here
 %Important parameter to play with
 Gk13=(Gk13k-0.5*G31);
 Gk31=(Gk13k+0.5*G31);
 Gk23=(Gk23k-0.5*G32);
 Gk32=(Gk23k+0.5*G32);
 %
 kmatrix=zeros([3,3]); % kmatrix initiation
 kmatrix(1,3)=W*exp(-Gk13/(8.31*(T+273.15))); % units would be microsec inverse
 kmatrix(3,1)=W*exp(-Gk31/(8.31*(T+273.15)));
 kmatrix(2,3)=W*exp(-Gk23/(8.31*(T+273.15)));
 kmatrix(3,2)=W*exp(-Gk32/(8.31*(T+273.15)));
 % when monomer
 if(Mer==1)
 if(i==j)
 TransMatrix(i, j) = 0;
 else
 TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix from the
kmatrix which is created in kinetic_nMer script
 end
 end
 % when polyMer more than monoMer system
 if(Mer>1)
 transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[];
 subtract1 = TotalStates(i,:)- TotalStates(j,:); % substraction of rows in order to
determine if only one of the N,M,U is switching
 subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 makes it
seems like 2 places are changed but if we flip 123 to 321-322 only one place is changed and
hence it should be allowed
 if(nnz(subtract1)==1) % if only subtraction lead to one non-zero entry
then do the below loop
 transformInd = find(subtract1~=0); % what is the position/index where the
switch is happening
 beforeSwitch = TotalStates(i,transformInd); % what was it (N=1,M=2,U=3) that
switched
 afterSwitch = TotalStates(j,transformInd); % what was it (N=1,M=2,U=3) that it
switched to
 TransMatrix(i, j) = kmatrix(beforeSwitch, afterSwitch); % picking the rates from kinetic
Mer kmatrix and filling in trans matrix
 elseif(nnz(subtract2)==1) % for the flipping case doing the same
thing
 transformInd = find(subtract2~=0);
 flipMer = fliplr(TotalStates(i,:));
 beforeSwitch = flipMer(1,transformInd);
 afterSwitch = TotalStates(j,transformInd);
 TransMatrix(i, j) = kmatrix(beforeSwitch, afterSwitch);
 else
 TransMatrix(i, j) = 0;

 S-5

 end
 end
 end
 end
 ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for make
differential equation
 for i = 1:NumStates
 for j = 1:NumStates
 if (i==j)
 ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition matrix
 end
 end
 end
 conc0 = zeros([NumStates, 1]); % initial conc initialization for all the states to be zero
 conc0(1)= 40e-6; % initial concentration of nn nnn nnnn
 options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',...
 'NormControl','on','NonNegative',numel(conc0),'Refine',1,...
 'MStateDependence','weak','MassSingular','maybe','BDF','off');
 [TEq,ConcEq] =
ode15s(@(t,conc)myODE(t,conc,ratematrix),linspace(0,1e4,1e2),conc0,options);
 %% Calulation of kinetic rates
 TransMatrix = zeros([NumStates, NumStates]); ratematrix = [];
 % TransMatrix(i,j) is rate of reaction of species i going to species j
 for i = 1:NumStates
 for j = 1:NumStates
 speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string
 speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string
 xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective
change in pairs
 xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22'));
 xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33'));
 %% Thermodynamic delta G for transitions
 % G31 is defined outside the for loop as it is NOT dependent on x
 G31 = g31*(T-Tm)+ gg31*GHCL + xn*gnn;
 G32 = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x
 %% Remaining kinetics from here
 %Important parameter to play with
 Gk13=(Gk13k-0.5*G31);
 Gk31=(Gk13k+0.5*G31);
 Gk23=(Gk23k-0.5*G32);
 Gk32=(Gk23k+0.5*G32);
 %
 kmatrix=zeros([3,3]); % kmatrix initiation
 kmatrix(1,3)=W*exp(-Gk13/(8.31*(T_fin+273.15))); % units would be microsec inverse
 kmatrix(3,1)=W*exp(-Gk31/(8.31*(T_fin+273.15)));
 kmatrix(2,3)=W*exp(-Gk23/(8.31*(T_fin+273.15)));
 kmatrix(3,2)=W*exp(-Gk32/(8.31*(T_fin+273.15)));
 % when monoMer
 if(Mer==1)

 S-6

 if(i==j)
 TransMatrix(i, j) = 0;
 else
 TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix from
the kmatrix which is created in kinetic_nMer script
 end
 end
 % when polyMer more than monoMer system
 if(Mer>1)
 transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[];
 subtract1 = TotalStates(i,:)- TotalStates(j,:); % substraction of rows in order to
determine if only one of the N,M,U is switching
 subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 makes
it seems like 2 places are changed but if we flip 123 to 321-322 only one place is changed and
hence it should be allowed
 if(nnz(subtract1)==1) % if only subtraction lead to one non-zero
entry then do the below loop
 transformInd = find(subtract1~=0); % what is the position/index where the
switch is happening
 beforeSwitch = TotalStates(i,transformInd); % what was it (N=1,M=2,U=3) that
switched
 afterSwitch = TotalStates(j,transformInd); % what was it (N=1,M=2,U=3) that it
switched to
 TransMatrix(i, j) = kmatrix(beforeSwitch, afterSwitch); % picking the rates from
kinetic Mer kmatrix and filling in trans matrix
 elseif(nnz(subtract2)==1) % for the flipping case doing the same
thing
 transformInd = find(subtract2~=0);
 flipMer = fliplr(TotalStates(i,:));
 beforeSwitch = flipMer(1,transformInd);
 afterSwitch = TotalStates(j,transformInd);
 TransMatrix(i, j) = kmatrix(beforeSwitch, afterSwitch);
 else
 TransMatrix(i, j) = 0;
 end
 end

 end
 end
 ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for make
differential equation
 for i = 1:NumStates
 for j = 1:NumStates
 if (i==j)
 ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition matrix
 end
 end
 end
 options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',...

 S-7

 'NormControl','on','NonNegative',numel(conc0),'Refine',1,...
 'MStateDependence','weak','MassSingular','maybe','BDF','off');
 [Time, Conc] = ode15s(@(t,conc)myODE(t,conc, ratematrix), tspan, ConcEq(end,:)', options);
 %% Formulating the X(but not sure at this point)
 concN=zeros(size(Conc(:,1)));
 concM=zeros(size(Conc(:,1)));
 concU=zeros(size(Conc(:,1)));
 for i = 1:NumStates
 concN = concN + Conc(:,i)*howmany(i,1)/Mer;
 concM = concM + Conc(:,i)*howmany(i,2)/Mer;
 concU = concU + Conc(:,i)*howmany(i,3)/Mer;
 end
 sumconc = concN+concM+concU;
 concN=concN./sumconc;
 concM=concM./sumconc;
 concU=concU./sumconc;
 end

3. AWSEM additional information and parameter input file
The total Hamiltonian consists of a backbone term ℋEE, a potential of mean force ℋF:G, and

a fragment memory term ℋG::

 ℋHIJK: = ℋEE +ℋF:G +ℋG:. (S4)

ℋEE constrains the backbone chain to physically realistic heteropolymer conformations. using

connectivity of beads, chain bonding, chiral, Ramachandran, and excluded volume terms:

 ℋEE = ℋLMN + ℋLOPQN +ℋR +ℋSP-P +ℋTULV (S5)

The potential of mean force ℋF:G depends on the identities of the interacting residues and

contains direct contacts, water-mediated contacts, burial, β-strand hydrogen bonding, parallel-

antiparallel cooperative hydrogen bonding, and helix hydrogen bonding terms:

 ℋF:G = ℋWQSTLX +ℋYPXTS +ℋZ[SQPV +ℋ\ +ℋF]HF +ℋOTVQU (S6)

The form of the P-AP potential is

 ℋF]HF = 	−𝜆F]HF`𝛾HFb ∑ ∑ 𝜈e,g𝜈ehi,g]i
min(ehmn,))
goehmp

)]mp
eom + 𝛾HF ∑ ∑ 𝜈e,g𝜈ehi,g]i)

goehmq
)]mq
eom +

𝛾F ∑ ∑ 𝜈g,e𝜈ehi,ghi)]i
goehr

)]mp
eom s (S7a)

where
 𝜈e,g =

m
t
`1 + tanh y𝜂{𝑟; − 𝑟}~�,}~���s. (S7b)

In the smooth switching term 𝜈e,g , the screening length 𝜂 = 7.0 Å, and the cutoff 𝑟; = 8.0	Å. Here,

I and J are the residue indices (or Ca atom indices) The first summation term in ℋF]HF aligns

continuously connected chain segments into b-hairpins with weight 𝛾HFb = 1.0, and second and

 S-8

third terms induce antiparallel and parallel alignments of two chain segments, respectively, with

weights 𝛾HF = 	𝛾F = 0.4. The scaling factor 𝜆F]HF was set to 0.5 kcal/mole in all simulations.

To further correct the secondary structure bias, we used the Protein Secondary Structure

Prediction server JPRED, which provides information to adjust AWSEM’s Ramachandran term

ℋ�P-P and b-strand hydrogen bonding term ℋ\. The default Ramachandran potential is not

sequence-dependent (with the exception of proline), but by predicting the secondary structure

using JPRED, we bias the potential towards Ramachandran angles found in b-sheets or a-helices.

As for the hydrogen bonding term ℋ\, the secondary structure information from JPRED is used

to derive the propensity for residue pairs to hydrogen bond. See SI section 4 for secondary structure

prediction.

Parameter input file

[Chain]
10.0 10.0 30.0
2.45798 2.50665 2.44973

[Chi]
20.0 -0.83

[Epsilon]
1.0

[Rama]
2.0
5
 1.3149 15.398 0.15 1.74 0.65 -2.138
1.32016 49.0521 0.25 1.265 0.45 0.318
 1.0264 49.0954 0.65 -1.041 0.25 -0.78
 2.0 419.0 1.0 0.995 1.0 0.820
 2.0 15.398 1.0 2.25 1.0 -2.16

[Rama_P]
3
 0.0 0.0 1.0 0.0 1.0 0.0
2.17 105.52 1.0 1.153 0.15 -2.4
2.15 109.09 1.0 0.95 0.15 0.218
 0.0 0.0 1.0 0.0 2.0 0.0
 0.0 0.0 1.0 0.0 2.0 0.0

[SSWeight]
0 0 0 1 1 0
0 0 0 0 0 0

[ABC]
0.483 0.703 -0.186
0.444 0.235 0.321
0.841 0.893 -0.734

 S-9

#Chain, Chi, Rama, Rama_P, ABC, are parameters for the backbone potential.
#SSWeight turns on the JPRED Secondary structure bias for Rama, and
#for Dssp_Hdrgn.

#Dssp_Hdrgn is H_beta
#first line for all the terms below are scaling factors

[Dssp_Hdrgn]
1.0
0.0 0.0
1.37 0.0 3.49 1.30 1.32 1.22 0.0
1.36 0.0 3.50 1.30 1.32 1.22 3.47 0.33 1.01
1.17 0.0 3.52 1.30 1.32 1.22 3.62 0.33 1.01
0.76 0.68
2.06 2.98
7.0
1.0 0.5
12.0

#P_AP is H_P_AP and scaling factor is changed from 1.0 to 0.5

[P_AP]
0.5
1.5
1.0 0.4 0.4
8.0
7.0
5 8
4

#Water is H_water

[Water]
1.0
5.0 7.0
2.6
13
2
4.5 6.5 1
6.5 9.5 1

#Burial is H_burial

[Burial]
1.0
4.0
0.0 3.0
3.0 6.0
6.0 9.0

#Helix is H_Helix and is turned off indicated by “-“

[Helix]-
1.5
2.0 -1.0
7.0 7.0
3.0
4
15.0

 S-10

4.5 6.5
0.77 0.68 0.07 0.15 0.23 0.33 0.27 0.0 0.06 0.23 0.62 0.65 0.50 0.41 -3.0 0.35
0.11 0.45 0.17 0.14
0 -3.0
0.76 0.68
2.06 2.98

#[Fragment_Memory_Table]
#scaling_factor (varied from 0.1 to 0.3)
#mem_file
#gamma_file
#rmin rmax dr
#frag_table_well_width (changed from 1.0 to 0.2)
#fm_energy_debug_flag
#fm_sigma_exp

[Fragment_Memory_Table]
0.2
fragsLAMW.mem.single
seq.gama
0 50 0.01
0.2
0
0.15

4. Secondary structure prediction from JPRED for monomer, dimer, trimer, and tetramer.
“E” stands for β-strand.
Monomer:
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG
--------EEEE-----EEEEE----EEEE-----

Dimer:
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE----
G
-

Trimer:
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE----
GGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG
-----------------EEEE-----EEEEE----EEEE-----
Tetramer:
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE----
GGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT
-----------------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE---
NASQFERPSG
-EEEE-----

 S-11

5. Mass spectrometry of QFiP variants

Fig. S1: Mass spectrometry results of Qfip35 protein purified using A) GST and B) His tag both
showing a peak at m/z = 17.766 K Da and 17.771 K Da respectively.

A

B

 S-12

6. Additional kinetics and thermodynamic melt traces and global fits

a. Kinetics traces for MFiP35, TFiP35 and QFiP35 (model with 3 states per domain)

Fig. S2. Kinetic traces for the monomer, with global three-states-per-domain fit.

Fig. S3. Kinetic traces for the trimer, with global three-states-per-domain fit.

 S-13

Fig. S4. Kinetic traces for the tetramer (His tag), with global three-states-per-domain fit.

b. Complete thermodynamic melt and kinetics traces (model with two states per domain)

As discussed in the main text, the two-state fit is generally inferior to the three-state fit. This is
easily evident by comparing how
(a) the fitted curves in Fig. 3 (main text) go through the data, vs. how they do in Fig. 6d below;
(b) the fitted curves in Fig. 5 (main text) and Figs. 6abs go through the data, vs. how they do in
Figures S6e-h. Note in particular the rightmost panel in S6e, the last two rows and third column in
S6f and S6g.

Fig. S5. Two-states-per-domain global fitting (A-D) of the thermal melts at different GuHCl
concentrations and comparison at 2 M GuHCl (E). (A) MFiP35; (B) DFiP35; (C) TFiP(35); (D)
QFiP35 expressed with a His tag. The curves are from the global multi-domain model fit of all
thermodynamic and kinetic data of all n-mers, assuming two states per domain.

 S-14

Fig. S6. Kinetic traces for the monomer, with global two-states-per-domain fit (black curve).

Fig. S7. Kinetic traces for the dimer, with global two-states-per-domain fit (black curve).

 S-15

Fig. S8. Kinetic traces for the trimer, with global two-states-per-domain fit (black curve).

 S-16

Fig. S9. Kinetic traces for the tetramer (*His tag), with global two-states-per-domain fit (black
curve).

7. Complete set of domain state model populations

Fig. S10. Complete set of traces analogous to Fig. 6 in the main text, derived from fitting 47 thermal
melts and kinetic relaxation traces.

 S-17

8. Fraction of native state achieved by WW monomer in models I, II and III

Figure S11. WW-domain dimer simulated annealing trajectory with respect to fraction of native
contacts Q for domains 1, 2, and average of both domains using model II. Trajectories start at 650
K and are gradually cooled to 300 K.

Figure S12. WW-domain trimer simulated annealing trajectory with respect to fraction of native
contacts Q for domains 1, 2, 3, and average of all three domains using model II. Trajectories start
at 650 K and are gradually cooled to 300 K.

Figure S13. WW-domain trimer simulated annealing trajectory with respect to fraction of native
contacts Q for domains 1, 2, 3, 4, and average of all four domains using model II. Trajectories
start at 650 K and are gradually cooled to 300 K.

