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1. Sequences used in the experiments and computational model 

Table S1. Sequences of FiP35 WW domain oligomer constructs used in this work. Linkers in 
bold. The FiP35 sequence is derived from the NCBI reference sequence NP_006212.1. 

Fip35 (Monomer) 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG 
DFiP35 (Dimer) 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSG 
TFiP35 (Trimer) 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT
NASQFERPSG 
QFiP35 (tetramer) 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRM
SRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT
NASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG 

 

2. Additional information on the global fitting model  

Explanation of parameters in the model  
The model parameters mentioned in Methods and in Table 1 in the main text are described below. 
The model free energy is given by 
   Δ𝐺 = #𝑁{𝑔()(𝑇 − 𝑇-) +𝑚()[𝐺𝑢𝐻𝐶𝑙]} +    (S1) 
 #𝑀9𝑔(:(𝑇 − 𝑇-)+𝑚(:[𝐺𝑢𝐻𝐶𝑙] + 𝑔(:

(;) < + #𝑈 ∙ 0   (S2) 
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• Subscripts are: N (folded form); M (misfolded form); U (unfolded form)  
• #N, #M and #U equals the number of N, M, and U domains present 
• Tm is the melting temperature of native domains in absence of denaturant or intermediates 
• gUN  is the thermal free energy derivative (folded domain relative to unfolded domain) 
• mUN  is the corresponding denaturant free energy derivative 
• gUM is the thermal free energy derivative (misfolded domain relative to unfolded domain) 
• mUM  is the corresponding denaturant free energy derivative 
• g(0)UM is the free energy of M relative to U at T=Tm and no denaturant 

Units are provided in Table 1 of the main text. 
The observed fluorescence signals were fitted by assuming a linear baseline for each domain, and 
summing over the number of each type (N, M or U) of domain. For example, for the unfolded 
domain baseline SU is given by 
 𝑆( = 𝑏( + 𝑎((𝑇 − 𝑇-) (S3) 
bU = unfolded intercept (average contribution per monomer to the overall intercept) 
aU = unfolded slope (average contribution per monomer to the overall slope) 
Similarly the native intercept, baseline and slope are represented with a subscript “N.” We assumed 
that the parameters for misfolded domains were the average of unfolded and native domains as 
this was sufficient to globally fit all the data essentially within measurement uncertainty and 
greatly reduced the model’s flexibility. Finally, the model assumed constant activation barriers 
and a constant prefactor (ignoring temperature-dependence of the solvent viscosity): 
𝐺)(
C  = kinetic barrier going from folded to unfolded, in kJ/mole 

𝐺:(
C = kinetic barrier going from intermediate to unfolded, in kJ/mole 

In the kinetic model the starting point at t=0 for the experimental data and simulated data was 
matched, i.e. we assumed that there was no unresolved an ultra-fast kinetic phase or ‘dead time.’  
 
Matlab code for the free energy of tethered oligomers  
Note: The variables g31= gUN, g32= gUM, go32= g(0)UM, gg31= mUN, gg3= mUM, gnn=gmm=0, mu= 
aU, mm= aM, mf= aN in the notation at the top of this page. 
 
Function[S,dG,Keq,Si]=ThermoFit(Mer,TotalStates,GHCL,TRange,Tm,g31,g32,go32,gg31,gg3
2,gnn,gmm,bu,mu,bf,mf,bm,mm) 
% 
NumStates = size(TotalStates,1);      % number of all possible species 
%% 
for p = 1:numel(TRange)35 
    T= TRange(p); 
    % Signals for individual N, M and U 
    Su = bu+mu*(T-Tm)+ 5*(Mer==1)- 4*(Mer==4);  %unfolded baseline%%%%%%% 
additional 5nm for monomer 
    Sf = bf+mf*(T-Tm)+0.5*(Mer==1)- 4*(Mer==4);  %folded baseline %%%%%%%%% 
additional 1nm for monomer  
    Sm = bm+mm*(T-Tm);  %misfolded baseline 
    % Thermodynamic delta G for transitions 
    % Here each of species is a separate state with associated G 
    % U/UU/UU/UUUU is the ground/ref state with G ==0 
    deltaG  = zeros(1,NumStates); % Initialize 
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    for i =1:NumStates % This loop will calculate signal & k_eq for each species coming from 
ground species 
      howmanyN = numel(find(TotalStates(i,:)==1)); % how many N are there in order to make 
signal  
      howmanyM = numel(find(TotalStates(i,:)==2)); % how many M are there in order to make 
signal  
      howmanyU = numel(find(TotalStates(i,:)==3)); % how many U are there in order to make 
signal  
      Si(p,i) = (howmanyN*Sf+howmanyM*Sm+howmanyU*Su)/Mer; % generate signal for all 
the species 
      % 
      speciesstr = sprintf('%u',TotalStates(i,:)); % change species into a string  
      xn = numel(findstr(speciesstr, '11')); % find the pair MM in the species 
      xm = numel(findstr(speciesstr, '22')); % find the pair MM in the species 
      xu = numel(findstr(speciesstr, '33')); % find the pair MM in the species 
      dG(p,i) = howmanyN*(g31*(T-Tm)+ gg31*GHCL + xn*gnn)+ howmanyM*(g32*(T-Tm)+ 
go32+ gg32*GHCL +xm*gmm) + howmanyU*0; 
      Keq(p,i) =exp(-dG(p,i)/8.31/(T+273.15)); % equilibrium rate for all the species i 
    end 
    S(p,1) = Si(p,:)*Keq(p,:)'/sum(Keq(p,:),2); % generating signal for thermodynamics 
end 
end 
 
Matlab code for the kinetic representation  
function[Chi,Time,Conc,ConcEq,TransMatrix]=KinFit(Mer,TotalStates,GHCL,T,T_fin,... 
Tm,g31,g32,go32,gg31,gg32,gnn,gmm,Gk13k,Gk23k,tspan,ExpData) 
NumStates = size(TotalStates,1);      % number of all possible species 
% Calculate the barriers and kinetic parameters 
W = 20; % prefactor [1/us] 
%% Solve ODE at T = temp 
TransMatrix = zeros([NumStates, NumStates]);  
% TransMatrix(i,j) is rate of reaction of species i going to species j 
for i = 1:NumStates 
   howmany(i,1) = numel(find(TotalStates(i,:)==1)); % how many N are there in order to make 
signal  
   howmany(i,2) = numel(find(TotalStates(i,:)==2)); % how many M are there in order to make 
signal  
   howmany(i,3) = numel(find(TotalStates(i,:)==3)); % how many U are there in order to make 
signal  
   for j = 1:NumStates 
   speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string  
   speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string  
   xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective change 
in pairs 
   xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22')); 
   xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33')); 
   %% Thermodynamic delta G for transitions  
   % G31 is defined outside the for loop as it is NOT dependent on x 
   G31     = g31*(T-Tm)+ gg31*GHCL + xn*gnn; 



 S-4 

   G32     = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x 
    %% Remaining kinetics from here 
    %Important parameter to play with  
    Gk13=(Gk13k-0.5*G31); 
    Gk31=(Gk13k+0.5*G31); 
    Gk23=(Gk23k-0.5*G32); 
    Gk32=(Gk23k+0.5*G32); 
    % 
    kmatrix=zeros([3,3]); % kmatrix initiation 
    kmatrix(1,3)=W*exp(-Gk13/(8.31*(T+273.15))); % units would be microsec inverse 
    kmatrix(3,1)=W*exp(-Gk31/(8.31*(T+273.15))); 
    kmatrix(2,3)=W*exp(-Gk23/(8.31*(T+273.15))); 
    kmatrix(3,2)=W*exp(-Gk32/(8.31*(T+273.15))); 
    % when monomer 
    if(Mer==1) 
      if(i==j) 
       TransMatrix(i, j) = 0; 
      else 
        TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix from the 
kmatrix which is created in kinetic_nMer script    
      end 
    end 
    % when polyMer more than monoMer system  
    if(Mer>1) 
      transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[]; 
      subtract1 = TotalStates(i,:)- TotalStates(j,:);         % substraction of rows in order to 
determine if only one of the N,M,U is switching 
      subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 makes it 
seems like 2 places are changed but if we flip 123 to 321-322 only one place is changed and 
hence it should be allowed  
      if(nnz(subtract1)==1)                                   % if only subtraction lead to one non-zero entry 
then do the below loop 
           transformInd = find(subtract1~=0);                 % what is the position/index where the 
switch is happening  
           beforeSwitch = TotalStates(i,transformInd);        % what was it (N=1,M=2,U=3) that 
switched  
           afterSwitch = TotalStates(j,transformInd);         % what was it (N=1,M=2,U=3) that it 
switched to  
           TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch);   % picking the rates from kinetic 
Mer kmatrix and filling in trans matrix 
      elseif(nnz(subtract2)==1)                                       % for the flipping case doing the same 
thing  
           transformInd = find(subtract2~=0); 
           flipMer = fliplr(TotalStates(i,:)); 
           beforeSwitch = flipMer(1,transformInd); 
           afterSwitch = TotalStates(j,transformInd); 
           TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch); 
      else 
        TransMatrix(i, j) = 0; 
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      end 
    end 
   end 
  end 
  ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for make 
differential equation 
    for i = 1:NumStates 
      for j = 1:NumStates 
        if (i==j) 
          ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition matrix 
        end 
      end 
    end 
    conc0   = zeros([NumStates, 1]); % initial conc initialization for all the states to be zero 
    conc0(1)= 40e-6;  % initial concentration of nn nnn nnnn 
    options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',... 
   'NormControl','on','NonNegative',numel(conc0),'Refine',1,... 
   'MStateDependence','weak','MassSingular','maybe','BDF','off'); 
    [TEq,ConcEq] = 
ode15s(@(t,conc)myODE(t,conc,ratematrix),linspace(0,1e4,1e2),conc0,options); 
    %% Calulation of kinetic rates 
    TransMatrix = zeros([NumStates, NumStates]); ratematrix = []; 
    % TransMatrix(i,j) is rate of reaction of species i going to species j 
    for i = 1:NumStates 
      for j = 1:NumStates 
        speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string  
        speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string  
        xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective 
change in pairs 
        xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22')); 
        xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33')); 
        %% Thermodynamic delta G for transitions  
        % G31 is defined outside the for loop as it is NOT dependent on x 
        G31     = g31*(T-Tm)+ gg31*GHCL + xn*gnn; 
        G32     = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x 
        %% Remaining kinetics from here 
        %Important parameter to play with  
        Gk13=(Gk13k-0.5*G31); 
        Gk31=(Gk13k+0.5*G31); 
        Gk23=(Gk23k-0.5*G32); 
        Gk32=(Gk23k+0.5*G32); 
        % 
        kmatrix=zeros([3,3]); % kmatrix initiation 
        kmatrix(1,3)=W*exp(-Gk13/(8.31*(T_fin+273.15))); % units would be microsec inverse 
        kmatrix(3,1)=W*exp(-Gk31/(8.31*(T_fin+273.15))); 
        kmatrix(2,3)=W*exp(-Gk23/(8.31*(T_fin+273.15))); 
        kmatrix(3,2)=W*exp(-Gk32/(8.31*(T_fin+273.15))); 
        % when monoMer 
        if(Mer==1) 
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          if(i==j) 
           TransMatrix(i, j) = 0; 
          else 
            TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix from 
the kmatrix which is created in kinetic_nMer script    
          end 
        end 
        % when polyMer more than monoMer system  
        if(Mer>1) 
          transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[]; 
          subtract1 = TotalStates(i,:)- TotalStates(j,:);         % substraction of rows in order to 
determine if only one of the N,M,U is switching 
          subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 makes 
it seems like 2 places are changed but if we flip 123 to 321-322 only one place is changed and 
hence it should be allowed  
          if(nnz(subtract1)==1)                                   % if only subtraction lead to one non-zero 
entry then do the below loop 
               transformInd = find(subtract1~=0);                 % what is the position/index where the 
switch is happening  
               beforeSwitch = TotalStates(i,transformInd);        % what was it (N=1,M=2,U=3) that 
switched  
               afterSwitch = TotalStates(j,transformInd);         % what was it (N=1,M=2,U=3) that it 
switched to  
               TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch);   % picking the rates from 
kinetic Mer kmatrix and filling in trans matrix 
          elseif(nnz(subtract2)==1)                                       % for the flipping case doing the same 
thing  
               transformInd = find(subtract2~=0); 
               flipMer = fliplr(TotalStates(i,:)); 
               beforeSwitch = flipMer(1,transformInd); 
               afterSwitch = TotalStates(j,transformInd); 
               TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch); 
          else 
            TransMatrix(i, j) = 0; 
          end 
        end 
  
      end 
    end 
    ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for make 
differential equation 
    for i = 1:NumStates 
      for j = 1:NumStates 
        if (i==j) 
          ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition matrix 
        end 
      end 
    end 
    options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',... 
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   'NormControl','on','NonNegative',numel(conc0),'Refine',1,... 
   'MStateDependence','weak','MassSingular','maybe','BDF','off'); 
    [Time, Conc] = ode15s(@(t,conc)myODE(t,conc, ratematrix), tspan, ConcEq(end,:)', options); 
    %% Formulating the X(but not sure at this point) 
    concN=zeros(size(Conc(:,1))); 
    concM=zeros(size(Conc(:,1))); 
    concU=zeros(size(Conc(:,1))); 
    for i = 1:NumStates 
    concN = concN + Conc(:,i)*howmany(i,1)/Mer; 
    concM = concM + Conc(:,i)*howmany(i,2)/Mer; 
    concU = concU + Conc(:,i)*howmany(i,3)/Mer; 
    end 
    sumconc = concN+concM+concU; 
    concN=concN./sumconc; 
    concM=concM./sumconc; 
    concU=concU./sumconc; 
    end 
 

 

3. AWSEM additional information and parameter input file 
The total Hamiltonian consists of a backbone term ℋEE, a potential of mean force ℋF:G, and 

a fragment memory term ℋG::   

 ℋHIJK: = ℋEE +ℋF:G +ℋG:. (S4) 

ℋEE constrains the backbone chain to physically realistic heteropolymer conformations. using 

connectivity of beads, chain bonding, chiral, Ramachandran, and excluded volume terms: 

 ℋEE = ℋLMN + ℋLOPQN +ℋR +ℋSP-P +ℋTULV (S5) 

The potential of mean force ℋF:G depends on the identities of the interacting residues and 

contains direct contacts, water-mediated contacts, burial, β-strand hydrogen bonding, parallel-

antiparallel cooperative hydrogen bonding, and helix hydrogen bonding terms: 

 ℋF:G = ℋWQSTLX +ℋYPXTS +ℋZ[SQPV +ℋ\ +ℋF]HF +ℋOTVQU  (S6) 

The form of the P-AP potential is 

 ℋF]HF = 	−𝜆F]HF`𝛾HFb ∑ ∑ 𝜈e,g𝜈ehi,g]i
min(ehmn,))
goehmp

)]mp
eom + 𝛾HF ∑ ∑ 𝜈e,g𝜈ehi,g]i)

goehmq
)]mq
eom +

𝛾F ∑ ∑ 𝜈g,e𝜈ehi,ghi)]i
goehr

)]mp
eom s  (S7a) 

where 
 𝜈e,g =

m
t
`1 + tanh y𝜂{𝑟; − 𝑟}~�,}~���s. (S7b)  

In the smooth switching term 𝜈e,g , the screening length 𝜂 = 7.0 Å, and the cutoff 𝑟; = 8.0	Å. Here, 

I and J are the residue indices (or Ca atom indices) The first summation term in ℋF]HF aligns 

continuously connected chain segments into b-hairpins with weight 𝛾HFb = 1.0, and second and 
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third terms induce antiparallel and parallel alignments of two chain segments, respectively, with 

weights 𝛾HF = 	𝛾F = 0.4. The scaling factor 𝜆F]HF was set to 0.5 kcal/mole in all simulations.  

To further correct the secondary structure bias, we used the Protein Secondary Structure 

Prediction server JPRED, which provides information to adjust AWSEM’s Ramachandran term 

ℋ�P-P and b-strand hydrogen bonding term ℋ\. The default Ramachandran potential is not 

sequence-dependent (with the exception of proline), but by predicting the secondary structure 

using JPRED, we bias the potential towards Ramachandran angles found in b-sheets or a-helices. 

As for the hydrogen bonding term ℋ\, the secondary structure information from JPRED is used 

to derive the propensity for residue pairs to hydrogen bond. See SI section 4 for secondary structure 

prediction. 

 

Parameter input file 
 
[Chain] 
10.0 10.0 30.0  
2.45798 2.50665 2.44973 
 
[Chi] 
20.0 -0.83 
 
[Epsilon] 
1.0 
 
[Rama] 
2.0 
5 
 1.3149  15.398 0.15   1.74 0.65 -2.138 
1.32016 49.0521 0.25  1.265 0.45  0.318 
 1.0264 49.0954 0.65 -1.041 0.25  -0.78 
    2.0   419.0  1.0  0.995  1.0  0.820 
    2.0  15.398  1.0   2.25  1.0  -2.16 
 
[Rama_P] 
3 
 0.0    0.0 1.0   0.0  1.0   0.0 
2.17 105.52 1.0 1.153 0.15  -2.4 
2.15 109.09 1.0  0.95 0.15 0.218 
 0.0    0.0 1.0   0.0  2.0   0.0 
 0.0    0.0 1.0   0.0  2.0   0.0 
 
[SSWeight] 
0 0 0 1 1 0 
0 0 0 0 0 0 
 
[ABC] 
0.483 0.703 -0.186 
0.444 0.235 0.321 
0.841 0.893 -0.734 
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#Chain, Chi, Rama, Rama_P, ABC, are parameters for the backbone potential.  
#SSWeight turns on the JPRED Secondary structure bias for Rama, and 
#for Dssp_Hdrgn. 
 
#Dssp_Hdrgn is H_beta 
#first line for all the terms below are scaling factors  
 
[Dssp_Hdrgn] 
1.0 
0.0  0.0 
1.37  0.0  3.49 1.30 1.32 1.22   0.0 
1.36  0.0  3.50 1.30 1.32 1.22   3.47  0.33 1.01 
1.17  0.0  3.52 1.30 1.32 1.22   3.62  0.33 1.01 
0.76   0.68 
2.06   2.98 
7.0 
1.0    0.5 
12.0 
 
#P_AP is H_P_AP and scaling factor is changed from 1.0 to 0.5 
 
[P_AP] 
0.5 
1.5 
1.0 0.4 0.4 
8.0 
7.0 
5 8 
4 
 
#Water is H_water 
 
[Water] 
1.0 
5.0 7.0 
2.6 
13 
2 
4.5 6.5 1 
6.5 9.5 1 
 
#Burial is H_burial  
 
[Burial] 
1.0 
4.0 
0.0 3.0 
3.0 6.0 
6.0 9.0 
 
#Helix is H_Helix and is turned off indicated by “-“  
 
[Helix]- 
1.5 
2.0 -1.0 
7.0 7.0 
3.0 
4 
15.0 
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4.5 6.5 
0.77 0.68 0.07 0.15 0.23 0.33 0.27 0.0 0.06 0.23 0.62 0.65 0.50 0.41 -3.0 0.35 
0.11 0.45 0.17 0.14 
0 -3.0 
0.76   0.68 
2.06   2.98 
 
#[Fragment_Memory_Table] 
#scaling_factor (varied from 0.1 to 0.3) 
#mem_file 
#gamma_file 
#rmin rmax dr 
#frag_table_well_width (changed from 1.0 to 0.2) 
#fm_energy_debug_flag 
#fm_sigma_exp 
 
[Fragment_Memory_Table] 
0.2 
fragsLAMW.mem.single 
seq.gama 
0 50 0.01 
0.2 
0 
0.15 
 
 
 
4. Secondary structure prediction from JPRED for monomer, dimer, trimer, and tetramer. 
“E” stands for β-strand. 
Monomer: 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG 
--------EEEE-----EEEEE----EEEE----- 

Dimer: 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS 
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE---- 
G 
- 

Trimer: 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS 
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE---- 
GGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSG 
-----------------EEEE-----EEEEE----EEEE----- 
Tetramer: 
HMKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPS 
--------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE----EEEE---- 
GGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHITNASQFERPSGGGSGGSGGSGKLPPGWEKRMSRDGRVYYFNHIT 
-----------------EEEE-----EEEEE----EEEE---------------------EEEE-----EEEEE--- 
NASQFERPSG 
-EEEE----- 
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5. Mass spectrometry of QFiP variants 
 

 
 

 
Fig. S1: Mass spectrometry results of Qfip35 protein purified using A) GST and B) His tag both 
showing a peak at m/z = 17.766 K Da and 17.771 K Da respectively. 

 

  

A 

B 
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6. Additional kinetics and thermodynamic melt traces and global fits 

a. Kinetics traces for MFiP35, TFiP35 and QFiP35 (model with 3 states per domain) 

  
Fig. S2.  Kinetic traces for the monomer, with global three-states-per-domain fit. 

 
Fig. S3.  Kinetic traces for the trimer, with global three-states-per-domain fit. 
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Fig. S4.  Kinetic traces for the tetramer (His tag), with global three-states-per-domain fit. 

 

b. Complete thermodynamic melt and kinetics traces (model with two states per domain) 

As discussed in the main text, the two-state fit is generally inferior to the three-state fit. This is 
easily evident by comparing how  
(a) the fitted curves in Fig. 3 (main text) go through the data, vs. how they do in Fig. 6d below; 
(b) the fitted curves in Fig. 5 (main text) and Figs. 6abs go through the data, vs. how they do in 
Figures S6e-h. Note in particular the rightmost panel in S6e, the last two rows and third column in 
S6f and S6g.  

 
Fig. S5.  Two-states-per-domain global fitting (A-D) of the thermal melts at different GuHCl 
concentrations and comparison at 2 M GuHCl (E). (A) MFiP35; (B) DFiP35; (C) TFiP(35); (D) 
QFiP35 expressed with a His tag. The curves are from the global multi-domain model fit of all 
thermodynamic and kinetic data of all n-mers, assuming two states per domain. 
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Fig. S6.  Kinetic traces for the monomer, with global two-states-per-domain fit (black curve). 

 

 
Fig. S7.  Kinetic traces for the dimer, with global two-states-per-domain fit (black curve). 
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Fig. S8.  Kinetic traces for the trimer, with global two-states-per-domain fit (black curve). 
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Fig. S9.  Kinetic traces for the tetramer (*His tag), with  global two-states-per-domain fit (black 
curve). 

 

7. Complete set of domain state model populations  

 
Fig. S10. Complete set of traces analogous to Fig. 6 in the main text, derived from fitting 47 thermal 
melts and kinetic relaxation traces. 
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8. Fraction of native state achieved by WW monomer in models I, II and III 

 
Figure S11. WW-domain dimer simulated annealing trajectory with respect to fraction of native 
contacts Q for domains 1, 2, and average of both domains using model II. Trajectories start at 650 
K and are gradually cooled to 300 K. 

 
 

Figure S12. WW-domain trimer simulated annealing trajectory with respect to fraction of native 
contacts Q for domains 1, 2, 3, and average of all three domains using model II. Trajectories start 
at 650 K and are gradually cooled to 300 K. 

 
Figure S13. WW-domain trimer simulated annealing trajectory with respect to fraction of native 
contacts Q for domains 1, 2, 3, 4, and average of all four domains using model II. Trajectories 
start at 650 K and are gradually cooled to 300 K. 


