Electronic supplementary information

Lone Pair Effects on Ternary Infrared Nonlinear Optical Materials

Ruonan Yin,^{ab#} Cong Hu,^{ab#} Binghua Lei,^a Shilie Pan*^a and Zhihua Yang*^a

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang

Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic

Information Materials and Devices, 40–1 South Beijing Road, Urumqi 830011, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of

Sciences, Beijing 100049, China

Fig. S1 Crystal structures of the K_3AsS_4 (a), Li_3AsS_3 (b), $Pb_9As_4S_{15}$ (c) and Ag_3AsS_3 (d)

Fig. S2 SHG density of $K_3AsS_4\left(a\right)$ (b) and $Pb_9As_4S_{15}\left(c\right)$ (d).

Fig. S3 Crystal structures of the Li_3SbS_3 (a), $AgSbS_2$ (b) and Ag_3SbS_3 (c) (the yellow and red balls represent S and Sb atoms, respectively)

Fig. S1 Crystal structures of the K_3AsS_4 (a), Li_3AsS_3 (b), $Pb_9As_4S_{15}$ (c) and Ag_3AsS_3 (d)

Fig. S2 SHG density of K3AsS4 (a) (b) and Pb9As4S15 (c) (d).

Fig. S3 Crystal structures of the $\rm Li_3SbS_3$ (a), $\rm AgSbS_2$ (b) and $\rm Ag_3SbS_3$ (c)