Supporting information

Mixed-metal Metal-Organic Frameworks

Sara Abednatanzi, Parviz Gohari Derakhshandeh, Hannes Depauw, François-Xavier Coudert, Henk Vrielinck, Pascal Van Der Voort and Karen Leus

Table S1: Frequency (column 6) analysis of spectroscopic and microscopic characterization techniques used in 101 studies of MM-MOFs. Main information (column 3) in the context of MM-MOFs characterization (Questions 1-4 in the main article, see section 3 and Figure 10) is also listed, as well as the potential for performing experiments in situ (column 4), this means under environmental conditions relevant for typical applications of MOFs in gas sorption or catalysis. Column 5 lists whether the technique provides bulk (B), surface (S) or spatially resolved (SR) information, with a resolution of typical MOF crystallite size or better (~1 μ m).

#	Characterizatio	Main information	In	Spatial	Freq.
	n technique		situ?	info	
1	Mass	Global concentration of (metal) elements	No	В	18
	spectrometry				
	(MS)				
2	Atomic		No	В	10
	Absorption				
	Spectroscopy				
	(AAS)				
3	Atomic		No	В	42
	Emission				
	Spectroscopy				
	(AES)				
4	X-ray		Yes	В	8
	fluorescence				
	(XRF)				
5	Powder X-ray	Crystal structure, lattice constants,	Yes	В	88
	diffraction	identification of crystalline phases			
	(PXRD)				
6	Single crystal X-		Yes	В	35
	ray diffraction				
	(SCXRD)				
7	Neutron		yes	В	1
	powder				
	diffraction				
	(NPD)				

8	Mössbauer spectroscopy	Metal oxidation state and local environment	Yes	В	7
9	X-ray / UV photoelectron spectroscopy (XPS)/(UPS)	Metal oxidation and binding state	No	S	16
10	X-ray absorption near-edge structure (XANES)	Metal oxidation and binding state, symmetry of metal complex	Yes	В	11
11	Extended X-ray Absorption Fine Structure (EXAFS)	Local environment of metal ions: distances, identities, and coordination numbers in neighboring shells	Yes	В	11
12	UV-Vis-NIR spectrophotom etry (UV-Vis- NIR)	Transition energies for valence electrons: identity, oxidation state and coordination of metal ions	Yes	B, SR	28
13	Photolumines- cence (PL)		Yes	B, SR	10
14	Raman scattering spectroscopy	Lattice and local vibrational modes: binding state of metals ions	Yes	В	5
15	Fourier transform infrared spectro-scopy (FTIR)		Yes	В	51
16	Electron Paramagnetic Resonance (EPR)	Electronic ground state (oxidation state, complex symmetry) and local environment of paramagnetic metal ions	Yes	В	14
17	Solid State Nuclear Magnetic Resonance (SS- NMR)	Binding state of diamagnetic metal ions	Yes	В	8
18	Scanning electron microscopy (SEM)	Morphology	No	SR	40

19	Transmission	Morphology, crystal structure	No	SR	8
	electron				
	microscopy				
	(TEM)				
20	Energy	Local element analysis	No	SR	33
	Dispersive X-ray				
	spectroscopy				
	(EDX, EDS)				

Table S2: Literature overview of reported mixed-metal MOFs

MIL	Entry	Metal*	Synthesis	Subject	Reference
MII_52	1	A13+/Cr3+	Direct	Incorporation	1
IVIIL-55	1	AI /CI	Synthesis	Breathing	
	2	A13+/Cr3+	Diroct	Breathing	2
	2	Al ^a /Cl ^a	Synthosis	Dieathing	
	2	A 13+ /\/3+	Direct	Incorporation	3
	5	Al ² / V ²	Supthosis	Broathing Cas	-
			Synthesis	Diedtillig, Gas	
		A 13+ /\ /3+	Discot	ausorption	1
	4	Al ³ /V ³	Direct	Incorporation	-
			Synthesis		r
	5	Al ³⁺ /V ³⁺	Direct	Breathing	5
			Synthesis		
	6	Al ³⁺ /V ³⁺	Direct	Breathing	6
			Synthesis	Influence of	
				oxygen	
	7	Al ³⁺ /V ³⁺	Direct	Catalysis	7
			Synthesis		
	8	Cr ³⁺ /Fe ³⁺	Direct	Incorporation,	8
			Synthesis	Gas adsorption	
	9	Fe ³⁺ /V ³⁺	Direct	Incorporation	9
			Synthesis		
	10	Cr ³⁺ /V ³⁺	Direct	Incorporation	10
			Synthesis	Breathing	
	11	Al ³⁺ /V ⁴⁺	Direct	Sensing	11
		-	Synthesis	-	
MIL-53-Br	1	Al ³⁺ /Fe ³⁺	Post-Synthetic	Incorporation	12
			exchange	·	
			in H₂O		

MIL-88B	1	Fe ³⁺ /Ni ²⁺	Direct Synthesis	Incorporation	13
MIL-100	1	Sc ³⁺ /Cr ³⁺ / Fe ³⁺ /Al ³⁺	Direct Synthesis	Incorporation, Catalysis	14
	2	Fe ³⁺ /Ni ²⁺	Direct Synthesis	Incorporation	13
MIL-101	1	Cr ³⁺ /Fe ³⁺ / Al ³⁺	Post-synthetic exchange in H ₂ O	Incorporation, Adsorption	12
	2	Cr ³⁺ /Fe ³⁺	Direct synthesis	Incorporation, Catalysis	15
	3	Cr ³⁺ /Fe ³⁺	Post-synthetic exchange in Ethanol	Incorporation, Catalysis	16
	4	Cr ³⁺ /Mg ²⁺	Direct synthesis	Adsorption	17
	5	Cr ³⁺ /Ce ³⁺	Direct synthesis	Catalysis	18
MIL-103	1	Eu ³⁺ /Tb ³⁺	Direct synthesis	Lanthanide thermometer	19
MIL-127	1	Fe ³⁺ /Ni ²⁺	Direct synthesis	Adsorption Incorporation	13
	2	Fe ³⁺ /Co ²⁺	Direct synthesis	Incorporation	13
	3	Fe ³⁺ /Mg ²⁺	Direct synthesis	Incorporation	13
MIL-808	1	Zr ⁴⁺ /Ce ⁴⁺	Direct synthesis	Incorporation	20

MIL = Materials Institute Lavoisier; * = oxidation state of the metal salts

UiO	Entry	Metal [*]	Synthesis	Subject	Reference
			approach		
UiO-66	1	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic	Incorporation	12
	2	Zr ⁴⁺ /Hf ⁴⁺	exchange in DMF		

	3	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Adsorption	21
	4	Zr ⁴⁺ /Ce ⁴⁺	Direct synthesis	Incorporation	20
	5	Zr ⁴⁺ /Ce ⁴⁺	Direct synthesis	Incorporation	22
	6	Zr ⁴⁺ /Ce ³⁺	Direct synthesis	Adsorption	23
	7	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Separation	24
	8	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Catalysis	25
	9	Zr ⁴⁺ /Ce ⁴⁺	Direct synthesis	Incorporation	26
UiO-66 (NH ₂) _x	1	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Catalysis	27
	2	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Catalysis	28
UiO-67	1	Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Photo- degradation	29
	2	Zr ⁴⁺ /Ce ³⁺	Direct synthesis	Adsorption	23
UiO-67-Ru	1	Zr ⁴⁺ /Ti ⁴⁺	Post-Synthetic exchange in DMF	Photo- degradation	29

UiO = Universitet i Oslo; DMF = Dimethylformamide * = oxidation state of the metal salts

MOF	Entry	Metal*	Synthesis approach	Subject	Reference
MOF-5	1	Zn ²⁺ /Co ²⁺	Post-synthetic exchange in DMF/MeCN	Thermo- dynamic study	30
		Zn ²⁺ /Ni ²⁺	Post-synthetic exchange in DMF	-	
	2	Zn ²⁺ /Co ²⁺	Direct synthesis	Adsorption	31
	3	$\frac{Zn^{2+}/TiCl^{2+}}{Zn^{2+}/V^{2+}}$	Post-synthetic exchange in DMF	Incorporation, redox chemistry	32

		7n ²⁺ /Cr ²⁺			
		Zn ²⁺ /CrCl ²⁺			
		Zn ²⁺ /Mn ²⁺			
		Zn ²⁺ /Fe ²⁺			
MOF-14	1	Zn ²⁺ / Co ²⁺	Post-synthetic	Incorporation	33
		Zn ²⁺ /Ni ²⁺	exchange in	•	
		Zn ²⁺ / Cu ²⁺	DMF		
MOF-74	1	Mg ²⁺ /Co ²⁺	Direct	Incorporation	34
		Mg ²⁺ /Co ²⁺ /	synthesis		
		Ni ²⁺ /Zn ²⁺			
		Mg ²⁺ /Co ²⁺ /			
		Ni ²⁺ /Zn ²⁺ /			
		Sr ²⁺ /Mn ²⁺			
		Mg ²⁺ /Co ²⁺ /			
		Ni ²⁺ /Zn ²⁺ /			
		Sr ⁺² /Mn ²⁺ /C			
		d ²⁺ /Ba ²⁺ /Fe ²			
		+/Ca ²⁺			
	2	7n ²⁺ /Co ²⁺	Direct	Adsorption	35
	2	211 / 00	synthesis	Band gan	
			Synthesis	energy	
	3	Co ²⁺ /Ni ²⁺	Direct	Adsorption	36
		00 /11	synthesis	Adoorption	
			0,11110010		
	4	Mg ²⁺ /Ni ²⁺	Direct	Incorporation,	37
		Mg ²⁺ /Cd ²⁺	synthesis	Adsorption	
	5	Co ²⁺ /Ni ²⁺	Post	Catalysis	38
			synthetic		
			exchange in		
			DMF		
	6	Mg ²⁺ /Ni ²⁺	Direct	Incorporation	39
		Mg ²⁺ /Co ²⁺	synthesis	Adsorption	
	7	Cu ²⁺ /Co ²⁺	Direct	Catalysis	40
			synthesis		
	8	Mg ²⁺ /Cd ²⁺	Direct	Incorporation	41
			synthesis		

MOF = metal-organic framework; DMF = Dimethylformamide; CH₃CN = Acetronitril; * = oxidation state of the metal salts.

	HKUST-1	Entry	Metal [*]	Synthesis	Subject	Reference
--	---------	-------	--------------------	-----------	---------	-----------

			approach		
HKUST-1	1	Cu ²⁺ /Zn ²⁺	Direct-	Incorporation	42
		-	synthesis	Adsorption	
	2	Cu ²⁺ /Zn ²⁺	Direct-	Structural	43
			synthesis	changes	
	3	Cu ²⁺ /Zn ²⁺	Direct-	Spin lattice	44
			synthesis	relaxation of Co	
				and CO2	
	4	Cu ²⁺ /Zn ²⁺	Direct	Adsorption of	45
			synthesis	small molecules	
				by solid-state	
				NMR	
	5	Cu ²⁺ /Zn ²⁺	Direct	Three-pulse	46
			synthesis	ESEEM on	
				adsorption and	
				desorption of	
		a 21 /7 21	.	deuterated H2	47
	6	Cu ²⁺ /Zn ²⁺	Post-synthetic	Incorporation	47
			exchange in		
	7	C + 12 - 2+	Direct	Adaquatiqu	48
	/	Cu ² /Zh ²	Direct	Adsorption	40
			synthesis		
	8	Cu ²⁺ / Ru ³⁺	Direct	Incorporation	49
	0		synthesis	meorporation	
			<i></i>		
	9	Cu ²⁺ /Li ⁺	Direct	Adsorption	50
	10	Cu ²⁺ /Na ⁺	synthesis	·	
	11	Cu ²⁺ /K ⁺	-		

HKUST = Hong Kong University of Science and Technology; * = oxidation state of the metal salts.

ZIF	Entry	Metal [*]	Synthesis approach	Subject	Reference
ZIF-8	1	Zn ²⁺ /Cu ²⁺	Direct synthesis	Catalysis	51
	2	Zn ²⁺ /Co ²⁺	Direct synthesis	Adsorption	52

	3	Zn ²⁺ /Co ²⁺	Direct synthesis	separation	53
BM ZIF-20	1	Zn ²⁺ /Co ²⁺	Direct synthesis	Catalysis	54
ZIF-71	1	Mn ^{2+/} Zn ²⁺	Post-synthetic	Incorporation	55
ZIF-67	1	Zn ²⁺ /Co ²⁺	Direct synthesis	Separation	56

ZIF = zeolitic imidiazolate framework; * = oxidation state of the metal salts

Compounds	Entry	Metal [*]	Synthesis approach	Subject	Reference
AI(OH) _{1-x} V(O) _x	1	Al ³⁺ /V ³⁺	Direct	Incorporation	3
(1,4-NDC)			synthesis		
COMOC-2-V _x -Al _{1-x}	1	Al ³⁺ /V ⁴⁺	Direct	Incorporation	57
			synthesis	Adsorption	
[CoNi(μ ₃ -tp) ₂ (μ ₂ - pyz) ₂]	1	Co ²⁺ /Ni ²⁺	Direct synthesis	Dye removal	58
CPM-4-M	1	In ³⁺ /Co ²⁺	Direct synthesis	Incorporation	59
CPM-15-M	_	In ³⁺ /Mg ²⁺ /	_	Incorporation	60
		Mn ²⁺ /Co ²⁺ /		Adsorption	
		Ni ²⁺ /Cd ²⁺			
CPM-16-M	_	In ³⁺ /Mn ²⁺ /	_	Incorporation	60
		Co ²⁺ /Ni ²⁺			
CPM-17-M	_	In ³⁺ /Co ²⁺ /	_	Incorporation	60
		Zn ²⁺			
CMP-15	_	In ³⁺ /Co ²⁺ ,	_	Incorporation	61
		Mg ²⁺ , Mn ²⁺ ,		Adsorption	
		Ni ²⁺ , Cd ²⁺			
CPM-18-M	-	In ³⁺ /Nd ³⁺	_	Incorporation	62
		/Sm³⁺			

СРМ-19-М		In ³⁺ /Nd ³⁺ / Pr ³⁺		Incorporation	62
CPM-20-M	-	In ³⁺ /Co ²⁺	_	Incorporation	62
				Adsorption	
CPM-21-M	-	In ³⁺ /Mn ³ /	_	Incorporation	62
CPM-23-M	-	In ³⁺ /Mg ²⁺	_	Incorporation	62
CPM-26-M	-	In ³⁺ /Co ²⁺ / Zn ²⁺	_	Incorporation	60
CPM-31	-	In ³⁺ /Zn ²⁺	_	Incorporation	59
CPM-32	_	In ³⁺ /Co ²⁺		Incorporation	59
CPM-200		V ³⁺ /Mg ²⁺		Adsorption	63
		Fe ³⁺ /Mg ²⁺			
		In ³⁺ /Mg ²⁺			
		In ²⁺ /Ni ²⁺			
		In ²⁺ /Mn ³⁺			
		In ³⁺ /Co ²⁺			
		Ga ³⁺ /Mg ²⁺			
		Sc ³⁺ /Mg ²⁺			
CTOF-1	1	Ti ⁴⁺ /Co ²⁺	Direct synthesis	Adsorption	64
CTOF-2	1	Ti ⁴⁺ /Co ²⁺	Direct- synthesis	Adsorption	64
Cu(II)–MOF*		Cu ²⁺ /Zn ²⁺	Direct synthesis	Adsorption	65
CuMg(pdc) ₂ (H ₂ O) ₄]·2H ₂ O) _n (1), [CuCa(pdc) ₂]n (2),[CuSr(pdc) ₂ (H ₂ O) ₃] _n (3), and {[CuBa(pdc) ₂ (H ₂ O) $_{5}$]· H ₂ O} _n (4)	1	Cu ²⁺ /Mg ²⁺ / Ca ²⁺ /Sr ²⁺ / Ba ²⁺	Direct synthesis	Catalysis	66
Eu _{0.0069} Tb _{0.9931} -	1	Eu ³⁺ /Tb ³⁺	Direct	Lanthanide	67
DMBDC			synthesis	thermometer	
Eu _{0.37} Tb _{0.63} -BTC-a	1	Eu ³⁺ /Tb ³⁺	Direct synthesis	Lanthanide thermometer	68
iso1	1	Cu ²⁺ /Mn ²⁺	Direct	Adsorption	69
	-	,	synthesis		

In _x Ga ₁₋	1	Ga ³⁺ /In ³⁺ /	Direct	Multi-	70
$_{x}(O_{2}C_{2}H_{4})_{0.5}(hfipb$		Al ³⁺	synthesis	component	
b)				reaction	
				Strecker	
MFM-300	1	Ga ³⁺ /Fe ³⁺	Direct	Adsorption	71
			synthesis	Catalysis	
[M _x M' _{2-x} (ca) ₂ (1,4-	1	Ni ²⁺ /Co ²⁺	Direct	Magnetism	72
dimb)] _n			synthesis		
M'MOF-1,	1	Fe ³⁺ / Ag ³⁺	Direct	Incorporation	73
M'MOF-2			synthesis		
M'MOF-4,	1	Cd ²⁺ / Zn ²⁺ /	Direct	Separation	74
-5,-6,-7		Cu ²⁺	synthesis		
PVDC-1	1	Yb ³⁺ ,Er ³⁺	Direct	Lanthanide	75
			synthesis	MOF barcode	
Tb _{0.9} Eu _{0.1} PIA	1	Tb ³⁺ /Eu ³⁺	Direct	Luminescent	76
			synthesis	Thermometer	
Eu _x Tb _{1-x} MOF	1	Tb ³⁺ /Eu ³⁺	Direct	pH and	77
			synthesis	temperature	
				sensors	
Nd _{0.577} Yb _{0.423} BDC-	1	Nd ³⁺ /Yb ³⁺	Direct	Near infrared	78
F ₄			synthesis	thermometer	
[(Tb _{0.914} Eu _{0.086}) ₂ (P	1	Tb ³⁺ /Eu ³⁺	Direct	Nanothermom-	79
$DA)_3(H_2O)]\cdot 2H_2O$			synthesis	ters	
Tb _{1-x} Eu _x FTPTC	1	Tb ³⁺ /Eu ³⁺	Direct	Cryogenic	80
			synthesis	luminescent	
				thermometer	01
$Tb_{0.99}Eu_{0.01}(BDC)_{1.}$	1	Tb ³⁺ /Eu ³⁺	Direct	Nanothermome	81
5(H ₂ O) ₂		-1 2: /- 2:	synthesis	-ter	
Eu _x Tb _{1-x} L	1	Tb ³⁺ /Eu ³⁺	Direct	Temperature	82
(H ₂ L: 1,3-bis(4-			synthesis	Sensing	
carboxyphenyl)i					
midazolium)					
Tb _{0.01} Gd _{0.99} L (H ₄ L	1	Tb ³⁺ /Gd ³⁺	Direct	Luminescent	83
= [1,1':4',1"-			synthesis	Sensor of Picric	
terphenyl]-				Acid	
2',4,4",5'-					
tetracarboxylic					
	1	1/3+ / * - 2+	Discot	Nition and 1	8/
$[Y_{1.8}ID_{0.2}(PDA)_3(H_2)]$	1	Y ³⁺ /1D ³⁺	Direct	Nitro explosives	84
011].5µ50			synthesis	uelection	
1					

[Y _{1.8} Eu _{0.2} (PDA) ₃ (H ₂	1	Y ³⁺ /Eu ³⁺	Direct	Sensor for	85
O) ₁]·2H ₂ O			synthesis	Nitroaromatic	
				Explosives	
Zn ₃ (BDC) ₃	1	Zn ²⁺ /Cu ²⁺	Direct	Molecular	86
[Cu(Pyen)]			synthesis	sieving	
(M'MOF 1)					
ZTOF-1	1	Zn ²⁺ , Ti ⁴⁺	Direct	Adsorption	87
			synthesis		
Zn/Cu-BTC	1	Cu ²⁺ /Zn ²⁺	Direct	Incorporation	48
			synthesis	Desulfurization	
Fe ₂ (BDT) ₃	1	Fe ²⁺ /Fe ³⁺	Direct	Conductivity	88
			synthesis		
Fe(1,2,3	1	Fe ²⁺ /Fe ³⁺	Direct	Conductivity	89
triazolate) ₂ (BF ₄) _x			synthesis		
[(M1) _{3-x} (M2) _x O]	1	Mn ²⁺ /Fe ³⁺	Direct	Incorporation	90
₂ (TCPP-M) ₃		Ni ²⁺ /Fe ³⁺	synthesis	Catalysis	
		Co ²⁺ /Ni ²⁺	-		
		Mn ²⁺ /Co ²⁺	-		
		Mn ²⁺ /Mg ²⁺	-		
		Mn ²⁺ /Ni ²⁺			

NDC = naphthalene-2,6-dicarboxylate; COMOC = Center for Ordered Materials Organosilica and Catalysis; pyz = pyrazine ; CPM = crystalline porous material ; CTOF = cobalt-titanium organic framework ; pdc = pyridine-2,5-dicarboxylic acid; DMBDC = 2,5-dimethoxy-1,4-benzenedicarboxylate; iso = isoreticular; $H_2hfibb = 4,4'$ hexafluoroisopropylidene-bis-(benzoic acid) ; MFM = Manchester framework material; 1,4-dimb = 1,4-di-(1-imidzolyl-methyl)-benzene = ; $H_2PVDC = 4,4'-(1E,1'E)$ -2,2'-(2,5-dimethoxy-1,4-phenylene)bis(ethane-2,1-diyl)dibenzoic acid; M'MOF = mixed-metal-organic framework ; $H_2PIA = 5$ -(pyridin-4yl)isophthalic acid; $H_2pyen =$ 5-mthyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde; BDC = benzene-1,4dicarboxylic acid; ZTOF = zinc-titanium-organic framework; H₂BTC = benzene-1,3,5tricarboxylic acid ;* = oxidation state of the metal salts; $H_2BDT = 5,5'$ - (1,4phenylene)bis(1H-tetrazole); PDA = 1,4-phenylenediacetic acid; FTPTC = 2'-fluoro-[1,1':4',1"-terphenyl]-3,3",5,5"-tetracarboxylic acid.

Compounds	Entry	Metal	Synthesis approach	Subject	Reference

Cd ₃ [(Cd ₄ Cl) ₃ (BTT) ₈ (H ₂ O) ₁₂] ₂	1	Co ²⁺ /Ni ²⁺ /C d ²⁺	Post-synthetic exchange in Methanol	Adsorption	91
MFU-4I	1	Zn ²⁺ /Co ²⁺	Post-synthetic exchange in DMF	Thermo- dynamic study	30
MFU-4l	1	Zn ²⁺ /Co ²⁺	Post-synthetic exchange in DMF	Catalysis	92
MMPF-5	1	Cd ²⁺ /Co ²⁺	Post-synthetic exchange in DMSO	Catalysis	91
Mn ₃ [(Mn ₄ Cl) ₃ (BTT) ₈ (CH3OH) ₁₀] ₂	1	Li ⁺ /Cu ⁺ / Fe ²⁺ /Co ²⁺ / Ni ²⁺ /Cu ²⁺ /Z n ²⁺ /Mn ²⁺	Post-synthetic exchange in methanol	Adsorption	93
MOF 1, Cd1.5(H ₃ O) ₃ [(Cd₄O) ₃ (hett) ₈] ·6H ₂ O	1	Pb ²⁺ / Cd ²⁺	Post-synthetic exchange in water	Incorporation	94
Ni-ITHD	1	Zn ²⁺ /Ni ²⁺ /C o ²⁺ /Cu ²⁺	Direct synthesis and Post-synthetic exchange in DMF	Incorporation Adsorption	95, 96
PCN-333	1	Cr ³⁺ /Fe ³⁺	Post-synthetic exchange in DMF	Incorporation	97
PCN-426	1	Mg ²⁺ /Fe ³⁺ / Cr ³⁺	Post-synthetic exchange in DMF	Incorporation	98
PCN-922- PCN921		Cu ²⁺ /Zn ²⁺	Post Synthetic exchange in DMF	Incorporation	99
Porph@MO M-10-M	1	Cd ²⁺ /Mn ²⁺ / Cu ²⁺ /	Post-Synthetic exchange in Methanol	Catalysis	100
Post 65 (Mn(H₃O)	1	Mn ²⁺ /Fe ²⁺ / Co ²⁺ /Ni ²⁺ /C	Post-Synthetic exchange in	Incorporation	101

[(Mn₄Cl)₃(h mtt) ₈]		u ²⁺	DMF		
Zn _{1.6} Cu _{6.4} L ₁₆	1	Zn ²⁺ /Cu ²⁺	Post-synthetic exchange in water	Incorporation	102
Co _{1.2} Cu _{6.8} L ₁₆	1	Cu ²⁺ /Co ²⁺	Post-synthetic exchange in water	Incorporation	102
Zr(Ti)-NDC		Zr ⁴⁺ /Ti ⁴⁺	Post-synthetic exchange in DMF	Catalysis	103
PMOF-2		Zn ²⁺ /Cu ²⁺	Post-synthetic exchange in Methanol	Kinetics	47
SURMOF-1		Cu ²⁺ /Zn ²⁺ / Ni ²⁺ /Co ²⁺	Post synthetic exchange in DMF	Incorporation	33
${[M(L)_2(H_2O)_2].2(anion).g}$ uest. $(2H_2O)_n$		Zn ²⁺ /Cu ²⁺ / Cd ²⁺	Post-synthetic exchange in water	Incorporation	104

 $H_3BTT.2HCl = 1,3,5-Tris(2H-tetrazol-5-yl)benzene hydrochloride; MMPF = metal$ $metalloporphyrin framework; <math>H_2ett = 5,5',10,10',15,15'$ -Hexaethayltruxene-2,7,12tricarboxylic acid; ITHD = ith-d net topology; PCN = porous coordination network; MOM = metal-organic materials; H_2NDC = naphthalene-2,6-dicarboxylic acid; DMF = dimethylformamide ; DMSO = dimethylsulfoxide;

References

- 1. M. Mendt, B. Jee, N. Stock, T. Ahnfeldt, M. Hartmann, D. Himsl and A. Pöppl, *The Journal of Physical Chemistry C*, 2010, **114**, 19443-19451.
- M. Mendt, B. Jee, D. Himsl, L. Moschkowitz, T. Ahnfeldt, N. Stock, M. Hartmann and A. Pöppl, *Applied Magnetic Resonance*, 2014, 45, 269-285.
- 3. O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl and R. A. Fischer, *European Journal of Inorganic Chemistry*, 2013, **2013**, 4546-4557.
- I. Nevjestić, H. Depauw, K. Leus, V. Kalendra, I. Caretti, G. Jeschke, S. Van Doorslaer, F. Callens, P. Van Der Voort and H. Vrielinck, *ChemPhysChem*, 2015, **16**, 2968-2973.
- 5. I. Nevjestić, H. Depauw, K. Leus, G. Rampelberg, C. A. Murray, C. Detavernier, P. Van Der Voort, F. Callens and H. Vrielinck, *The Journal of Physical Chemistry C*, 2016, **120**, 17400-17407.
- I. Nevjestic, H. Depauw, P. Gast, P. Tack, D. Deduytsche, K. Leus, M. Van Landeghem, E. Goovaerts, L. Vincze, C. Detavernier, P. Van Der Voort, F. Callens and H. Vrielinck, *Physical Chemistry Chemical Physics*, 2017, DOI: 10.1039/C7CP04760F.
- 7. M. N. Timofeeva, V. N. Panchenko, N. A. Khan, Z. Hasan, I. P. Prosvirin, S. V. Tsybulya and S. H. Jhung, *Applied Catalysis A: General*, 2017, **529**, 167-174.
- F. Nouar, T. Devic, H. Chevreau, N. Guillou, E. Gibson, G. Clet, M. Daturi, A. Vimont, J. M. Greneche, M. I. Breeze, R. I. Walton, P. L. Llewellyn and C. Serre, *Chemical Communications*, 2012, 48, 10237-10239.
- M. I. Breeze, G. Clet, B. C. Campo, A. Vimont, M. Daturi, J.-M. Grenèche, A. J. Dent, F. Millange and R. I. Walton, *Inorganic Chemistry*, 2013, 52, 8171-8182.
- H. Depauw, I. Nevjestic, J. De Winne, G. Wang, K. Haustraete, K. Leus, A. Verberckmoes, C. Detavernier, F. Callens, E. De Canck, H. Vrielinck and P. Van Der Voort, *Chemical Communications*, 2017, 53, 8478-8481.
- I. Nevjestic, H. Depauw, P. Gast, P. Tack, D. Deduytsche, K. Leus, M. Van Landeghem, E. Goovaerts, L. Vincze, C. Detavernier, P. Van Der Voort, F. Callens and H. Vrielinck, *Phys Chem Chem Phys*, 2017, 19, 24545-24554.

- 12. M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, *Journal of the American Chemical Society*, 2012, **134**, 18082-18088.
- S. Wongsakulphasatch, F. Nouar, J. Rodriguez, L. Scott, C. Le Guillouzer, T. Devic, P. Horcajada, J. M. Greneche, P. L. Llewellyn, A. Vimont, G. Clet, M. Daturi and C. Serre, *Chem Commun*, 2015, **51**, 10194-10197.
- L. Mitchell, P. Williamson, B. Ehrlichová, A. E. Anderson, V. R. Seymour, S. E. Ashbrook, N. Acerbi, L. M. Daniels, R. I. Walton, M. L. Clarke and P. A. Wright, *Chemistry – A European Journal*, 2014, 20, 17185-17197.
- T. A. Vu, G. H. Le, C. D. Dao, L. Q. Dang, K. T. Nguyen, P. T. Dang, H. T. K. Tran, Q. T. Duong, T. V. Nguyen and G. D. Lee, *RSC Advances*, 2014, 4, 41185-41194.
- 16. K. Leng, C. Zhang, X. Li, C. Hou and Y. Sun, *Reaction Kinetics, Mechanisms and Catalysis*, 2017, **120**, 345-357.
- 17. Z. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q. Xia and Z. Li, *Chemical Engineering Science*, 2016, **147**, 109-117.
- 18. M. C. Wen, Y. Kuwahara, K. Mori, D. Q. Zhang, H. X. Li and H. Yamashita, *J Mater Chem A*, 2015, **3**, 14134-14141.
- 19. D. Ananias, C. D. S. Brites, L. D. Carlos and J. Rocha, *European Journal of Inorganic Chemistry*, 2016, DOI: 10.1002/ejic.201501195, 1967-1971.
- 20. M. Lammert, Gli and N. Stock, *Dalton Transactions*, 2017, **46**, 2425-2429.
- 21. C. Hon Lau, R. Babarao and M. R. Hill, *Chemical Communications*, 2013, **49**, 3634-3636.
- F. Nouar, M. I. Breeze, B. C. Campo, A. Vimont, G. Clet, M. Daturi, T. Devic, R. I. Walton and C. Serre, *Chemical Communications*, 2015, 51, 14458-14461.
- 23. A. M. Ebrahim and T. J. Bandosz, *ACS Applied Materials & Interfaces*, 2013, **5**, 10565-10573.
- 24. S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M. R. Hill, *Scientific Reports*, 2015, **5**, 7823.
- 25. J. P. Tu, X. L. Zeng, F. J. Xu, X. Wu, Y. F. Tian, X. D. Hou and Z. Long, *Chem Commun*, 2017, **53**, 3361-3364.
- K. A. Lomachenko, J. Jacobsen, A. L. Bugaev, C. Atzori, F. Bonino, S. Bordiga, N. Stock and C. Lamberti, *J Am Chem Soc*, 2018, 140, 17379-17383.
- 27. D. Sun, W. Liu, M. Qiu, Y. Zhang and Z. Li, *Chemical Communications*, 2015, **51**, 2056-2059.

- 28. Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, *Chemical Communications*, 2015, **51**, 5735-5738.
- 29. R. N. Amador, M. Carboni and D. Meyer, *RSC Advances*, 2017, **7**, 195-200.
- 30. C. K. Brozek and M. Dinca, *Chemical Communications*, 2015, **51**, 11780-11782.
- 31. J. A. Botas, G. Calleja, M. Sánchez-Sánchez and M. G. Orcajo, *Langmuir*, 2010, **26**, 5300-5303.
- 32. C. K. Brozek and M. Dinca, *J Am Chem Soc*, 2013, **135**, 12886-12891.
- 33. Q. Yao, J. Sun, K. Li, J. Su, M. V. Peskov and X. Zou, *Dalton Transactions*, 2012, **41**, 3953-3955.
- 34. L. J. Wang, H. Deng, H. Furukawa, F. Gándara, K. E. Cordova, D. Peri and O. M. Yaghi, *Inorganic Chemistry*, 2014, **53**, 5881-5883.
- 35. J. A. Botas, G. Calleja, M. Sánchez-Sánchez and M. G. Orcajo, International Journal of Hydrogen Energy, 2011, **36**, 10834-10844.
- J. A. Villajos, G. Orcajo, C. Martos, J. Á. Botas, J. Villacañas and G. Calleja, *International Journal of Hydrogen Energy*, 2015, 40, 5346-5352.
- 37. J. D. Howe, C. R. Morelock, Y. Jiao, K. W. Chapman, K. S. Walton and D. S. Sholl, *The Journal of Physical Chemistry C*, 2017, **121**, 627-635.
- 38. D. Sun, F. Sun, X. Deng and Z. Li, *Inorganic Chemistry*, 2015, **54**, 8639-8643.
- Y. Jiao, C. R. Morelock, N. C. Burtch, W. P. Mounfield, J. T. Hungerford and K. S. Walton, *Industrial & Engineering Chemistry Research*, 2015, 54, 12408-12414.
- 40. Y. Fu, L. Xu, H. Shen, H. Yang, F. Zhang, W. Zhu and M. Fan, *Chemical Engineering Journal*, 2016, **299**, 135-141.
- R. M. Marti, J. D. Howe, C. R. Morelock, M. S. Conradi, K. S. Walton,
 D. S. Sholl and S. E. Hayes, *J Phys Chem C*, 2017, **121**, 25778-25787.
- 42. M. Mendt, B. Jee, N. Stock, T. Ahnfeldt, M. Hartmann, D. Himsl and A. Poppl, *J Phys Chem C*, 2010, **114**, 19443-19451.
- 43. S. Friedländer, P. S. Petkov, F. Bolling, A. Kultaeva, W. Böhlmann, O. Ovchar, A. G. Belous, T. Heine and A. Pöppl, *The Journal of Physical Chemistry C*, 2016, **120**, 27399-27411.
- 44. F. Gul-E-Noor, D. Michel, H. Krautscheid, J. Haase and M. Bertmer, *The Journal of Chemical Physics*, 2013, **139**, 034202.
- 45. F. Gul-E-Noor, M. Mendt, D. Michel, A. Pöppl, H. Krautscheid, J. Haase and M. Bertmer, *The Journal of Physical Chemistry C*, 2013, **117**, 7703-7712.

- 46. M. Šimėnas, B. Jee, M. Hartmann, J. r. Banys and A. Pöppl, *The Journal of Physical Chemistry C*, 2015, **119**, 28530-28535.
- 47. X. Song, S. Jeong, D. Kim and M. S. Lah, *CrystEngComm*, 2012, **14**, 5753-5756.
- 48. T. Wang, X. Li, W. Dai, Y. Fang and H. Huang, *J Mater Chem A*, 2015, 3, 21044-21050.
- 49. M. A. Gotthardt, R. Schoch, S. Wolf, M. Bauer and W. Kleist, *Dalton Transactions*, 2015, **44**, 2052-2056.
- 50. Y. Cao, Y. Zhao, F. Song and Q. Zhong, *Journal of Energy Chemistry*, 2014, **23**, 468-474.
- A. Schejn, A. Aboulaich, L. Balan, V. Falk, J. Lalevee, G. Medjahdi, L. Aranda, K. Mozet and R. Schneider, *Catalysis Science & Technology*, 2015, 5, 1829-1839.
- 52. G. Kaur, R. K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu and S. K. Singh, *J Mater Chem A*, 2016, **4**, 14932-14938.
- 53. F. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim and H. K. Jeong, *J Mater Chem A*, 2017, **5**, 6090-6099.
- 54. Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu and H.-L. Jiang, *Advanced Materials*, 2015, **27**, 5010-5016.
- 55. H. Fei, J. F. Cahill, K. A. Prather and S. M. Cohen, *Inorganic Chemistry*, 2013, **52**, 4011-4016.
- 56. C. Q. Wang, F. Q. Yang, L. Q. Sheng, J. Yu, K. X. Yao, L. X. Zhang and Y. C. Pan, *Chemical Communications*, 2016, **52**, 12578-12581.
- 57. H. Depauw, I. Nevjestic, G. B. Wang, K. Leus, F. Callens, E. De Canck,
 K. De Buysser, H. Vrielinck and P. Van Der Voort, *J Mater Chem A*,
 2017, 5, 24580-24584.
- 58. A. Abbasi, M. Soleimani, M. Najafi and S. Geranmayeh, *Inorganica Chimica Acta*, 2016, **439**, 18-23.
- 59. S.-T. Zheng, X. Zhao, S. Lau, A. Fuhr, P. Feng and X. Bu, *Journal of the American Chemical Society*, 2013, **135**, 10270-10273.
- 60. S.-T. Zheng, C. Mao, T. Wu, S. Lee, P. Feng and X. Bu, *Journal of the American Chemical Society*, 2012, **134**, 11936-11939.
- 61. S. T. Zheng, T. Wu, F. Zuo, C. S. Chou, P. Y. Feng and X. H. Bu, *J Am Chem Soc*, 2012, **134**, 1934-1937.
- 62. S.-T. Zheng, T. Wu, C. Chou, A. Fuhr, P. Feng and X. Bu, *Journal of the American Chemical Society*, 2012, **134**, 4517-4520.
- 63. Q.-G. Zhai, X. Bu, C. Mao, X. Zhao and P. Feng, *Journal of the American Chemical Society*, 2016, **138**, 2524-2527.
- 64. K. Hong, W. Bak, D. Moon and H. Chun, *Crystal Growth & Design*, 2013, **13**, 4066-4070.

- T. K. Pal, D. De, S. Neogi, P. Pachfule, S. Senthilkumar, Q. Xu and P. K. Bharadwaj, *Chemistry A European Journal*, 2015, **21**, 19064-19070.
- 66. D. Saha, D. K. Hazra, T. Maity and S. Koner, *Inorganic Chemistry*, 2016, **55**, 5729-5731.
- 67. Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian and B. Chen, *Journal of the American Chemical Society*, 2012, **134**, 3979-3982.
- 68. H. Z. Wang, D. Zhao, Y. J. Cui, Y. Yang and G. D. Qian, *J Solid State Chem*, 2017, **246**, 341-345.
- J. Ferrando-Soria, P. Serra-Crespo, M. de Lange, J. Gascon, F. Kapteijn, M. Julve, J. Cano, F. Lloret, J. Pasán, C. Ruiz-Pérez, Y. Journaux and E. Pardo, *Journal of the American Chemical Society*, 2012, **134**, 15301-15304.
- 70. L. M. Aguirre-Díaz, F. Gándara, M. Iglesias, N. Snejko, E. Gutiérrez-Puebla and M. Á. Monge, *Journal of the American Chemical Society*, 2015, **137**, 6132-6135.
- C. P. Krap, R. Newby, A. Dhakshinamoorthy, H. García, I. Cebula, T. L. Easun, M. Savage, J. E. Eyley, S. Gao, A. J. Blake, W. Lewis, P. H. Beton, M. R. Warren, D. R. Allan, M. D. Frogley, C. C. Tang, G. Cinque, S. Yang and M. Schröder, *Inorganic Chemistry*, 2016, 55, 1076-1088.
- 72. M.-H. Zeng, B. Wang, X.-Y. Wang, W.-X. Zhang, X.-M. Chen and S. Gao, *Inorganic Chemistry*, 2006, **45**, 7069-7076.
- 73. Y. Zhang, B. Chen, F. R. Fronczek and A. W. Maverick, *Inorganic Chemistry*, 2008, **47**, 4433-4435.
- 74. M. C. Das, Q. Guo, Y. He, J. Kim, C.-G. Zhao, K. Hong, S. Xiang, Z. Zhang, K. M. Thomas, R. Krishna and B. Chen, *Journal of the American Chemical Society*, 2012, **134**, 8703-8710.
- 75. K. A. White, D. A. Chengelis, K. A. Gogick, J. Stehman, N. L. Rosi and S. Petoud, *Journal of the American Chemical Society*, 2009, **131**, 18069-18071.
- 76. X. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, B. Chen and G. Qian, Journal of the American Chemical Society, 2013, **135**, 15559-15564.
- 77. Y. H. Han, C. B. Tian, Q. H. Li and S. W. Du, *J Mater Chem C*, 2014, **2**, 8065-8070.
- 78. X. S. Lian, D. Zhao, Y. J. Cui, Y. Yang and G. D. Qian, *Chem Commun*, 2015, **51**, 17676-17679.

- Z. P. Wang, D. Ananias, A. Carne-Sanchez, C. D. S. Brites, I. Imaz, D. Maspoch, J. Rocha and L. D. Carlos, *Adv Funct Mater*, 2015, 25, 2824-2830.
- 80. D. A. Zhao, D. Yue, L. Zhang, K. Jiang and G. D. Qian, *Inorg Chem*, 2018, **57**, 12596-12602.
- 81. A. Cadiau, C. D. S. Brites, P. M. F. J. Costa, R. A. S. Ferreira, J. Rocha and L. D. Carlos, *Acs Nano*, 2013, **7**, 7213-7218.
- S. N. Zhao, L. J. Li, X. Z. Song, M. Zhu, Z. M. Hao, X. Meng, L. L. Wu, J. Feng, S. Y. Song, C. Wang and H. J. Zhang, *Adv Funct Mater*, 2015, 25, 1463-1469.
- 83. L. Li, J. H. Cheng, Z. P. Liu, L. Song, Y. J. You, X. H. Zhou and W. Huang, *Acs Appl Mater Inter*, 2018, **10**, 44109-44115.
- 84. D. K. Singha, S. Bhattacharya, P. Majee, S. K. Mondal, M. Kumar and P. Mahata, *J Mater Chem A*, 2014, **2**, 20908-20915.
- 85. D. K. Singha, P. Majee, S. K. Mondal and P. Mahata, *Eur J Inorg Chem*, 2015, DOI: 10.1002/ejic.201403097, 1390-1397.
- B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher and K. M. Thomas, *Journal of the American Chemical Society*, 2008, **130**, 6411-6423.
- 87. K. Hong, W. Bak and H. Chun, *Inorganic Chemistry*, 2013, **52**, 5645-5647.
- L. S. Xie, L. Sun, R. M. Wan, S. S. Park, J. A. DeGayner, C. H. Hendon and M. Dinca, *Journal of the American Chemical Society*, 2018, 140, 7411-7414.
- J. G. Park, M. L. Aubrey, J. Oktawiec, K. Chakarawet, L. E. Darago, F. Grandjean, G. J. Long and J. R. Long, *Journal of the American Chemical Society*, 2018, **140**, 8526-8534.
- Q. Liu, H. J. Cong and H. X. Deng, J Am Chem Soc, 2016, 138, 13822-13825.
- 91. J.-H. Liao, W.-T. Chen, C.-S. Tsai and C.-C. Wang, *CrystEngComm*, 2013, **15**, 3377-3384.
- 92. D. Denysenko, T. Werner, M. Grzywa, A. Puls, V. Hagen, G. Eickerling, J. Jelic, K. Reuter and D. Volkmer, *Chemical Communications*, 2012, **48**, 1236-1238.
- 93. M. Dincă and J. R. Long, *Journal of the American Chemical Society*, 2007, **129**, 11172-11176.
- 94. S. Das, H. Kim and K. Kim, *Journal of the American Chemical Society*, 2009, **131**, 3814-3815.
- 95. X. Song, M. Oh and M. S. Lah, *Inorganic Chemistry*, 2013, **52**, 10869-10876.

- 96. X. Song, T. K. Kim, H. Kim, D. Kim, S. Jeong, H. R. Moon and M. S. Lah, *Chemistry of Materials*, 2012, **24**, 3065-3073.
- 97. J. Park, D. Feng and H.-C. Zhou, *Journal of the American Chemical Society*, 2015, **137**, 11801-11809.
- 98. T.-F. Liu, L. Zou, D. Feng, Y.-P. Chen, S. Fordham, X. Wang, Y. Liu and H.-C. Zhou, *Journal of the American Chemical Society*, 2014, 136, 7813-7816.
- Z. Wei, W. Lu, H.-L. Jiang and H.-C. Zhou, *Inorganic Chemistry*, 2013, 52, 1164-1166.
- 100. Z. Zhang, L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi and M. J. Zaworotko, *Journal of the American Chemical Society*, 2012, **134**, 924-927.
- Y. Kim, S. Das, S. Bhattacharya, S. Hong, M. G. Kim, M. Yoon, S. Natarajan and K. Kim, *Chemistry – A European Journal*, 2012, **18**, 16642-16648.
- 102. J. a. Zhao, L. Mi, J. Hu, H. Hou and Y. Fan, *Journal of the American Chemical Society*, 2008, **130**, 15222-15223.
- 103. A. M. Rasero-Almansa, M. Iglesias and F. Sanchez, *RSC Advances*, 2016, **6**, 106790-106797.
- 104. G. Mukherjee and K. Biradha, *Chemical Communications*, 2012, **48**, 4293-4295.