Electric Supporting Information (ESI) for:

Structure and Reactivity/Selectivity Control by Oriented Electric Fields

Sason Shaik,*a Rajeev Ramanan,a David Danovich,a and Debasish Mandalb

^a Institute of Chemistry and The Lise Meitner-Minerva Center for Computational

Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel

^b School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004 Punjab, India.

Email ID: sason@yfaat.ch.huj.ac.il

Table of contents:	Page
I. Methodology for Calculations of OEEF Effects on Bonds	5
DFT. Calculation	5
Scheme S1. F_z convention and explanation for Z axis notation used in the tutorial. Table S1. Dependence, of the equilibrium bond length (R, Å), total energy (E, au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for H ₂ using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at	5
each F_Z value.	6
Table S2 . Dependence, of the equilibrium bond length (R, A), total energy (E, au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for Li ₂ using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized	
at each F_Z value.	6
Table S3 . Dependence, of the equilibrium bond length (R, Å), total energy(E, -199.0 au) and Mulliken charges of the atoms, on the strength of applied electricfield (F_Z , au) for F ₂ ; using B3LYP/cc-pVTZ level of theory. The bond length was	
re-optimized at each F_Z value.	6
Table S4 . Dependence, of the equilibrium bond length (R, Å), total energy	
(E, -920.0 au) and Mulliken charges of the atoms, on the strength of applied electric	
field (F_Z , au) for Cl ₂ ; using B3LYP/cc-pVTZ level of theory. The bond length was	
re-optimized at each F_Z value.	7
Table S5. Dependence, of the equilibrium bond length (R, A), total energy	
(E, -591.0 au) and Mulliken charges of the atoms, on the strength of applied electric	
field (F_Z , au) for I ₂ ; using B3LYP/cc-pVTZ level of theory. The bond length was	_
re-optimized at each F_Z value.	7
Table S6. Dependence, of the equilibrium bond length (R, A), total energy	
(E, -460.0 au) and Mulliken charges of the atoms, on the strength of applied electric	
field (F_Z , au) for HCI; calculated with B3LYP/cc-pV1Z level of theory. The bond	-
length was re-optimized at each F_Z value.	1
Table S 7. Dependence, of the equilibrium bond length (R, A), total energy $(F_{1}, 5000)$	
(E, -500.0 au) and Mulliken charges of the atoms, on the strength of applied electric $\int_{-\infty}^{\infty} 11 (E_{-}) \int_{-\infty}^{\infty} 1 (E_{-}) (E_{-}) \int_{-\infty}^{\infty} 1 (E_{-}) (E_{-}) (E_{-}) \int_{-\infty}^{\infty} 1 (E_{-}) $	
field (F_Z , au) for H ₃ C-Cl; calculated with B3LY P/cc-pV1Z level of theory. The bond	0
length was re-optimized at each F_Z value.	8
Table S8. Dependence, of the equilibrium bond length (K, A) , total energy $(F = (18.0 \text{ sy}) \text{ and } Myllikan alterates of the storms on the storm other of analysis$	
(E, -018.0 au) and Mulliken charges of the atoms, on the strength of applied (E_{1}, a_{2}) for Ma C Cli calculated with D21 VD/as πVTZ level of theorem.	
The bond length was re-ontimized at each E_{-} value.	0
The bond length was re-optimized at each F_Z value.	8 0
Table S9 . Total energies of azobenzene (Et, au) for trans, cis and TS (Fig. S1), imaginary frequencies of TS (iFreq, cm ⁻¹), isomerization barrier	9
$(\Delta E^{\#}, \text{ kcal mol}^{-1})$ and trans \rightarrow cis energy difference $(\Delta E_{t-c}, \text{ kcal mol}^{-1})$ calculated	
by B3LYP/cc-pVTZ.	9
VB Calculations	10
Table S10 . F_Z dependence of total energies (E, F_Z in au), weights of the covalent	

and ionic structures and VB Mulliken charges of the atoms for H ₂ ; calculated with	
VBSCF/6-311G(p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was	
used.	10
Table S11 . F_Z (au) dependence of total energies (E, -14.0 au), weights of the covalent	
and ionic structures and VB Mulliken charges of the atoms for Li ₂ ; calculated with	
VBSCF/6-311G(p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.	11
Table S12 . F_Z (au) dependence of total energies (E, -198.0 au), weights of the	
covalent and ionic structures and VB Mulliken charges of the atoms on the strength	
of applied electric field (F_z , au) for F_2 ; calculated with VBSCF/6-311G(d). At each	
F_Z value the B3LYP/cc-pVTZ optimized geometry was used.	11
Table S13 . F_Z (au) dependence of total energies (E, -918.0 au), weights of the covalent	
and ionic structures and VB Mulliken charges of the atoms for Cl ₂ ; calculated with	
VBSCF/6-311G(d) level of theory. At each F_Z value the B3LYP/cc-pVTZ optimized	
geometry was used.	11
Table S14 . F_Z (au) dependence of total energies (E, -589.0 au), weights of the covalent	
and ionic structures and VB Mulliken charges of the atoms for I ₂ ; calculated with	
VBSCF/cc-pVTZ-PP. At each F_Z value the B3LYP/cc-pVTZ optimized geometry	
was used.	12
Table S15 . F_Z (au) dependence of total energies (E, -460.0 au), weights of the covalent	
and ionic structures and VB Mulliken charges of the atoms for HCl; calculated with	
VBSCF/6-311G(d,p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry	
was used.	12
Table S16 . Bond dissociation energy (D_e , kcal mol ⁻¹) and RE _{CS} (kcal mol ⁻¹) of HCl	
molecule calculated at different F_Z values (au). Total energies (E _t , au) at the optimal	
distance, 1.3 A, and the long distance at 7.0A.	13
Table S17 . Total energies (E_t , au), energy of covalent structure (E_{cov} , au), energy of	
H ⁺ Cl ionic structure (E _{ion} , au) at optimal distance of 1.3A and energy difference	
between covalent and ionic structures at 1.3A and bond dissociation energy	
(D _e , kcal mol ⁻¹)	13
Table S18. Dependence of total energies (E, -459.0 au), weights of the covalent and	
ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (A)	
for HCl; calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.02 au.	13
Table S19. Dependence of total energies (E, -459.0 au), weights of the covalent and	
ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (A)	
HCl; calculated with VBSCF/6-311G(d,p) level of theory at F_Z = -0.02 au.	14
Table S20. Dependence of total energies (E, -459.0 au), weights of the covalent and	
ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (A);	
calculated with VBSCF/6-311G(d,p) level of theory at F_Z =-0.12 au.	14
Table S21. Dependence of total energies (E, -459.0 au), weights of the covalent and	
ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (A);	
calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.11 au.	15
Table S22. Dependence of total energies (E, -459.0 au) and Mulliken charges of the	
atoms on the H-Cl bond length (A) for the covalent and the H^+ Cl ionic-structures	

of HCl molecule; calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.11 au.	15
and ionic structures and VB Mulliken charges of the atoms, for Me ₃ CCl; calculated	
with VBSCF/6-311G(d,p) level of theory. At each F_Z value the B3LYP/cc-pVTZ	
ontimized geometry was used	16
Table S24 Dependence of total energies (E -615.0 au) weights of the covalent and	
ionic structures and VB Mulliken charges of the atoms on the C-Cl bond length (Å) in	
Me ₃ CCl: calculated with VBSCF/6-311G(d n) level of theory at F_{7} =-0.02 au At each	
R value the B3L YP/cc-nVTZ ontimized geometry was used	16
Table S25 Dependence of total energies (F -616.0 au) weights of the covalent and	10
ionic structures and VB Mulliken charges of the atoms on the C-Cl bond length $(Å)$ for	
MeacCl molecule calculated with VBSCE/6 311G(d n) level of theory at E_{c} =+0.02 au	
At each P value the P2LVP/ce nVTZ entimized geometry was used	17
CASSCE: CASSCE coloulations were carried out with Causian 00	17
Figure S2 Shape of 1S 2S 2Py 2Pz AO's of H atom and the energies of the corresponding	1/
states with $F_{7}=0.0$ (a) and $F_{7}=+0.1$ au (b) in the Z-direction calculated by	
CASSCF(1,5)/daug-cc-pV6Z level of theory.	18
Rotational Barrier for H ₂ C=CH ₂	18
Table S26 . Dependence of the barrier of rotation ΔE_{rot} (kcal mol ⁻¹) on F_Z (au); calculated	
by B3LYP functional with different basis sets and with different CASSCF levels with	
cc-pVTZ basis set	18
I. References for Methodology	19
II. Literature on EEF & Electrostatics	19
1. Sources for Electrostatics	19
References for Electrostatics	20
2. Additional References	20
A. Theoretical Studies on EEF	20
B . General Experimental Usages of EEF	23
C. Electric Fields for Chiral Charge Distributions	29
D. Spectroscopy	29
E. Measuring Local EF in Proteins	30
F. EEF effects on Ionic Liquids	30
G. Alignments by EEF	31
H. EEF in Bees and in Brain	31
I. Forbidden Reactions	31
J. Recent Theoretical Studies	32

I. Methodology for Calculations of OEEF Effects on Bonds

The text of this tutorial contains, in addition to reactivity, also discussions of orientedexternal electric field (OEEF) effects on various bonds. By and large, three computational procedures were used in the presence of OEEF. One involves density functional theoretic (DFT) calculations, and the second, ab-initio valence bond (VB) calculations. For the cases of H in OEEF, and the rotational barrier of $H_2C=CH_2$, we used CASSCF.

DFT Calculation: The B3LYP functional was used with the following basis sets (B): ccpVTZ, for I₂ we used cc-pVTZ-PP and cc-pVTZ-DK with DKH2 correction, and in the presence of OEEF, hence B3LYP/B/OEEF. These calculations were used for geometry optimization as well as for finding the critical OEEF along the bond axis Z, which is required to dissociate the bond, $F_{Z(dis)}$. In all cases studied, the bonds dissociated into ions. Some examples are given in Tables S1-S9. All calculations used GAUSSIAN 09.^[S1] Note that in most of the tables below, we specify the atoms, which are placed in the negative- and positive-directions along the Z axis, using Z<0 or Z>0 notation, respectively and also specify the sign of the OEEF using F_Z in the GAUSSIAN convention (see scheme S1).

Scheme S1. F_z convention and explanation for Z axis notation used in the tutorial.

			Mulliken charges		
F_Z	R	Е	Ha	Hb	
0.0	0.7428	-1.1799988	0.000	0.000	
0.01	0.7439	-1.1803419	0.059	-0.059	
0.1	0.8062	-1.2164293	0.592	-0.592	
0.11	0.8255	-1.2247346	0.654	-0.654	
0.12	0.8503	-1.2341829	0.717	-0.717	
0.13	0.8871	-1.2449804	0.784	-0.784	
0.14	0.9556	-1.2575720	0.861	-0.861	
0.15	dissoc. ^c				

Table S1. Dependence, of the equilibrium bond length (R, Å), total energy (E, au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for H₂ using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

<u>0.15</u> dissoc.^c <u>1</u> ^aThe first charge corresponds to the H atom (in H-H), which is placed in the Z<0 direction. ^bThe second charge corresponds to the H atom, which is placed at the Z>0 direction. ^cAt this F_Z the molecule dissociates to ions.

Table S2. Dependence, of the equilibrium bond length (R, Å), total energy (E, au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for Li₂ using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

			Mulliken charges	
F_Z	R	Е	Li ^a	Li ^b
0.0	2.6933	-0.0172062	0.000	0.000
0.01	2.8625	-0.0311803	-0.246	0.246
0.015	3.5150	-0.0532564	-0.237	0.237
0.017	dissoc. ^{c,d}			

^aThe first charge corresponds to the Li atom (in Li-Li), which is placed in the Z<0 direction. ^bThe second charge corresponds to the Li atom, which is placed at the Z>0 direction. ^cAt this F_Z the molecule dissociates to ions. ^dNote that the Na₂ molecule dissociated to ions already at $F_Z = 0.015$ au.

Table S3. Dependence, of the equilibrium bond length (R, Å), total energy (E, -199.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for F_2 ; using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

			Mulliken charges	
F_Z	R	Е	F ^a	F ^b
0.0	1.3873	-0.5863963	0.000	0.000
0.01	1.3978	-0.5869249	0.033	-0.033
0.10	1.4746	-0.6420571	0.355	-0.355
0.11	1.4981	-0.6546340	0.399	-0.399
0.12	1.5284	-0.6688999	0.448	-0.448
0.13	1.5747	-0.6851645	0.504	-0.504
0.14	1.6939	-0.7042421	0.591	-0.591
0.15	dissoc ^c			

^aThe first charge corresponds to the F atom placed in the Z<0 direction. ^bThe second charge corresponds to the F atom placed at the Z>0 direction. ^cAt this F_Z the molecule dissociates to ions.

Table S4. Dependence, of the equilibrium bond length (R, Å), total energy (E, -920.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for Cl₂; using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

		<u> </u>	1		
			Mulliken charges		
F_Z	R	Е	Cla	Cl ^b	
0.0	2.0234	-0.4352474	0.000	0.000	
0.01	2.0256	-0.4371105	0.070	-0.070	
0.02	2.0330	-0.4427242	0.141	-0.141	
0.03	2.0462	-0.4521662	0.213	-0.213	
0.04	2.0668	-0.4655822	0.290	-0.290	
0.05	2.0985	-0.4832209	0.372	-0.372	
0.06	2.1496	-0.5055287	0.464	-0.464	
0.07	2.2563	-0.5335209	0.581	-0.581	
0.08	dissoc ^c				

^aThe first charge corresponds to the Cl placed in the Z<0 direction. ^bThe second charge corresponds to the Cl placed at the Z>0 direction. ^cAt this F_Z the molecule dissociates to ions.

Table S5. Dependence, of the equilibrium bond length (R, Å), total energy (E, -591.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for I₂; using B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

			Mulliken charges	
F_Z	R	Е	Ia	I ^b
0.0	2.7030	-0.6928111	0.000	0.000
0.0 ^c	2.6910	-0.4128544	0.000	0.000
0.01	2.7100	-0.6973375	0.130	-0.130
0.01°	2.7038 ^c	-0.4173923	0.128	-0.128
0.02	2.7329	-0.7110333	0.262	-0.262
0.03	2.7795	-0.7343061	0.398	-0.398
0.04	2.8757	-0.7681443	0.544	-0.544
0.05	dissoc ^d			

^aThe first charge corresponds to the I placed in the Z<0 direction. ^bThe second charge corresponds to the I placed at the Z>0 direction ^cResult for all electrons relativistic B3LYP/cc-pVTZ-DK level (-14227.0 au) with DKH2. ^dAt this F_Z the molecule dissociates to ions.

Table S6. Dependence, of the equilibrium bond length (R, Å), total energy (E, -460.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for HCl; calculated with B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

F_Z	R	Е	Ha	Cl ^b
0.0	1.2836	-0.8430388	0.159	-0.159
0.01	1.2871	-0.8485510	0.202	-0.202
0.05	1.3213	-0.8859545	0.365	-0.365
0.10	1.4738	-0.9711954	0.617	-0.617

0.11	dissoc ^c			
-0.01	1.2812	-0.8390633	0.115	-0.115
-0.05	1.2900	-0.8392461	-0.090	0.090
-0.10	1.3759	-0.8832440	-0.459	0.459
-0.11	1.4260	-0.9002835	-0.560	0.560
-0.12	dissoc ^c			

^aThe first charge corresponds to the H at (in H-Cl), which is placed in the Z<0 direction. ^bThe second charge corresponds to the Cl atm, placed in the Z>0 direction. ^cAt this F_Z the molecule dissociates to ions.

Table S7. Dependence, of the equilibrium bond length (R, Å), total energy (E, -500.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for H₃C-Cl; calculated with B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

			M	Mulliken charges			
F_Z	R	Е	Ca	H ₃ C ^b	Clc		
0.0	1.8002	-0.1644777	-0.201	0.169	-0.169		
0.01	1.8187	-0.1739794	-0.175	0.246	-0.246		
0.02	1.8450	-0.1870617	-0.143	0.327	-0.327		
0.03	1.8841	-0.2039740	-0.102	0.416	-0.416		
0.04	1.9521	-0.2252617	-0.040	0.523	-0.523		
0.05	2.2025	-0.2527999	0.102	0.717	-0.717		
0.06	dissoc ^d						
-0.01	1.7872	-0.1584413	-0.222	0.094	-0.094		
-0.02	1.7775	-0.1558398	-0.239	0.018	-0.018		
-0.04	1.7649	-0.1611601	-0.258	-0.141	0.141		
-0.06	1.7584	-0.1816334	-0.246	-0.322	0.322		
-0.07	1.7537	-0.1984008	-0.213	-0.428	0.428		
-0.08	1.7473	-0.2203680	-0.148	-0.551	0.551		
-0.09	1.7388	-0.2485539	-0.041	-0.694	0.694		
-0.10	1.7326	-0.2842507	0.099	-0.835	0.835		
-0.11	dissoc ^d						

^aThe first charge corresponds to the C atom (in H₃C-Cl), which is placed in the Z<0 direction. ^b Charge on the H₃C group placed in the Z<0 direction. ^cCharge corresponds to the Cl placed in the Z>0 direction. ^dAt this F_Z the molecule dissociates to ions.

Table S8. Dependence, of the equilibrium bond length (R, Å), total energy (E, -618.0 au) and Mulliken charges of the atoms, on the strength of applied electric field (F_Z , au) for Me₃C-Cl; calculated with B3LYP/cc-pVTZ level of theory. The bond length was re-optimized at each F_Z value.

			Mulliken charges		
F_Z	R	Е	C ^a	Me ₃ C ^b	Clc
0.0	1.8595	-0.1574552	0.103	0.220	-0.220
0.01	1.9061	-0.1705213	0.116	0.332	-0.332
0.02	2.0053	-0.1920442	0.135	0.476	-0.476

0.025	2.2285	-0.2071985	0.155	0.638	-0.638
0.03	dissoc ^d				
-0.01	1.8324	-0.1519888	0.091	0.120	-0.120
-0.02	1.8151	-0.1539516	0.079	0.024	-0.024
-0.03	1.8042	-0.1635044	0.065	-0.073	0.073
-0.04	1.7987	-0.1811075	0.049	-0.173	0.173
-0.05	1.7993	-0.2076251	0.028	-0.283	0.283
-0.06	1.8083	-0.2445527	0.004	-0.411	0.411
-0.07	1.8257	-0.2942568	-0.022	-0.563	0.563
-0.08	1.8707	-0.3598273	-0.046	-0.739	0.739
-0.09	2.004	-0.4450903	-0.063	-0.939	0.939
-0.10	dissoc ^d				

^aThe first charge corresponds to the C atom (in Me₃C-Cl), which is placed in the Z<0 direction. ^bCharge on the Me₃C group. ^cCharge corresponds to the Cl atom, which is placed in the Z>0 direction. ^dAt this F_Z the molecule dissociates to ions.

Figure S1. Trans-cis isomerization of azobenzene via the N-inversion mechanism

Table S9. Total energies of azobenzene (E_t, au) for trans, cis and TS (Fig. S1), imaginary frequencies of TS (iFreq, cm⁻¹), isomerization barrier ($\Delta E^{\#}$, kcal mol⁻¹) and trans \rightarrow cis energy difference (ΔE_{t-c} , kcal mol⁻¹) calculated by B3LYP/cc-pVTZ.

	E _t (trans)	E _t (cis)	E _t (TS)	iFreq	ΔE^{\ddagger}	ΔE_{t-c}
$F_{Z}=0.0$	-572.959636	-572.935234	-572.897150	-419.66	39.21	15.31
					$(23.9)^{a}$	
$F_{Z}=0.0125$	-572.977313	-572.954061	-572.931483	-293.91	28.76	19.24
					$(14.2)^{a}$	

F_Z =0.0175	-572.994994	-572.973962	-572.954061	-242.50	21.81	13.20
					$(12.4)^{a}$	
$F_Z = 0.0225$	-573.019669	-573.003629	-572.999564	-151.13	12.62	10.06
					$(2.6)^{a}$	
F_Z =0.0125	-572.987900	-572.968839	-572.941741	-377.33	28.97	11.96
$F_{Y}=0.0125$					$(17.0)^{a}$	
F_Z =0.0125	-573.012319	-572.952163	-572.923494	-306.29	55.74	37.75
Fz=0.0125					$(18.0)^{a}$	
F_{Z} =-0.0125	-572.977312	-572.954053	-572.915985	-481.40	38.48	14.60
					$(23.9)^{a}$	

^a Barrier from cis to trans.

VB Calculations: Generally, VBSCF was used with a few basis sets, B, and in the absence/presence of OEEF along the bond axis, hence VBSCF/B/OEEF. Typically, $B = 6-311+G^{**}$. The breathing-orbital VB (BOVB) method,^[S2] was used to test some of the VBSCF results. All VB calculations used the XMVB package.^[S3] examples are given in Tables S10 – S25.

Table S10. F_Z dependence of total energies (E, F_Z in au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms for H₂; calculated with VBSCF/6-311G(p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

	-	Weights	Weights of the VB structures			VB charges		
F_Z	E (au)	H· ·H	H- +Ha	H^+ - H^b	Hc	Hd		
0.0	-1.150386	0.821	0.089	0.089	0.000	0.000		
-0.1	-1.180367	0.530	0.470	0.000	-0.491	0.491		
-0.1 ^e	-1.182792 ^e	0.466 ^e	0.532 ^e	0.001 ^e	-0.531 ^e	0.531 ^e		
-0.11	-1.187214	0.467	0.543	0.000	-0.551	0.551		
-0.11 ^e	-1.189915 ^e	0.412 ^e	0.568 ^e	0.000 ^e	-0.587 ^e	0.587 ^e		
-0.12	-1.195026	0.398	0.602	0.000	-0.616	0.616		
-0.12 ^e	-1.197981 ^e	0.354 ^e	0.646 ^e	0.000 ^e	-0.646 ^e	0.646 ^e		

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the H atom placed in the Z>0 direction. ^cCharge corresponds to the H atom (in H-H), which is placed in the Z<0 direction. ^dCharge corresponds to the H atom (in H-H) placed in the Z>0 direction. ^eResults at the BOVB/6-311G(p) level.

Table S11. F_Z (au) dependence of total energies (E, -14.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms for Li₂; calculated with VBSCF/6-311G(p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

		Weights	s of the VB	VB charges		
F_Z	E (au)	Li· ·Li	Li ⁻ +Li ^a	Li ⁺ ⁻ Li ^b	Li ^c	Li ^d

0.0	-0.877797	0.998	0.001	0.001	0.000	0.000
-0.01	-0.898088	0.913	0.079	0.008	-0.089	0.089
-0.015	-0.917390	0.882	0.107	0.011	-0.096	0.096

^aWeight of the ionic structure where negative charge on the Li atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Li atom placed in the Z>0 direction. ^cCharge corresponds to the Li atom (in Li-Li), which is placed in the Z<0 direction. ^dCharge corresponds to the Li atom placed in the Z>0 direction.

Table S12. F_Z (au) dependence of total energies (E, -198.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms on the strength of applied electric field (F_z , au) for F_2 ; calculated with VBSCF/6-311G(d). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

		Weights of the VB structures			VB charges	
F_Z	Е	F· ·F	F- +Fa	F ⁺ ⁻ F ^b	F ^c	F ^d
0.0	-0.790868	0.772	0.114	0.114	0.000	0.000
-0.1	-0.839491	0.712	0.260	0.028	-0.240	0.240
-0.11	-0.849658	0.693	0.286	0.021	-0.274	0.274
-0.12	-0.861090	0.665	0.321	0.014	-0.315	0.315
-0.13	-0.874017	0.621	0.372	0.007	-0.372	0.372
-0.13	-0.915123 ^e	0.550 ^e	0.4365 ^e	0.015 ^e	-0.429 ^e	0.429 ^e
-0.14	-0.888394	0.498	0.502	0.000	-0.507	0.507
-0.14	-0.931017 ^e	0.488 ^e	0.506 ^e	0.006 ^e	-0.506 ^e	0.506 ^e
-0.15 ^f	-0.912158	0.273	0.727	0.000	-0.732	0.732

^aWeight of the ionic structure where negative charge on the F atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the F atom placed in the Z>0 direction. ^cCharge corresponds to the F atom placed in the Z<0 direction. ^dCharge corresponds to the F atom placed in the Z>0 direction. ^eBOVB/6-311G(d) results. ^fResult for F_Z =-0.15 au was calculated at the F-F distance equal 1.8Å.

Table S13. F_Z (au) dependence of total energies (E, -918.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms for Cl₂; calculated with VBSCF/6-311G(d) level of theory. At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

		1	1	U	5	
		Weights	s of the VB	VB charges		
F_Z	Е	Cl··Cl	Cl ⁻ +Cl ^a	Cl ⁺ ⁻ Cl ^b	Cl ^c	Cl ^d
0.0	-0.979228	0.692	0.154	0.154	0.000	0.000
-0.04	-1.006820	0.627	0.320	0.054	-0.266	0.266
-0.05	-1.023460	0.582	0.383	0.035	-0.348	0.348
-0.05	-1.038871 ^e	0.553 ^e	0.404 ^e	0.043 ^e	-0.360 ^e	0.360 ^e
-0.06	-1.045366	0.515	0.466	0.019	-0.446	0.447
-0.06	-1.061172 ^e	0.498 ^e	0.477 ^e	0.025 ^e	-0.451 ^e	0.451 ^e
-0.07	-1.075487	0.395	0.599	0.005	-0.595	0.595
-0.07	-1.091316 ^e	0.407 ^e	0.583 ^e	0.009 ^e	-0.574 ^e	0.574 ^e

^aWeight of the ionic structure where negative charge on the Cl atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the Cl atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction. ^eBOVB/6-311G(d) results.

Table S14. F_Z (au) dependence of total energies (E, -589.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms for I₂; calculated with VBSCF/cc-pVTZ-PP. At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

		Weig	ghts of th	VB charges				
			structure					
F_Z	Е	I· ·I	I- +Ia	I ⁺ -I ^b	Ic	Id		
0.0	-0.358069	0.708	0.146	0.146	0.000	0.000		
-0.01	-0.362481	0.701	0.190	0.109	0.093	-0.093		
-0.02	-0.375849	0.681	0.242	0.077	0.188	-0.188		
-0.03	-0.398653	0.639	0.314	0.047	0.297	-0.297		
-0.04	-0.432162	0.554	0.427	0.019	0.441	-0.441		
-0.05 ^e	-0.479740	0.385	0.613	0.002	0.642	-0.642		

^aWeight of the ionic structure where negative charge on the I atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the I atom placed in the Z>0 direction. ^cCharge corresponds to the I atom placed in the Z<0 direction. ^dCharge corresponds to the I atom placed in the Z>0 direction. ^eFor F_Z =-0.05 au at the I-I distance of 3.0Å.

Table S15. F_Z (au) dependence of total energies (E, -460.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms for HCl; calculated with VBSCF/6-311G(d,p). At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

		Weigh	ts of the VB st	ructures	VB ch	arges
F_Z	Е	H··Cl	H- +Cla	H ⁺ -Cl ^b	Hc	Cl ^d
0.0	-0.108224	0.697	0.074	0.229	0.154	-0.154
-0.01	-0.102428	0.703	0.091	0.205	0.114	-0.114
-0.05	-0.091529	0.695	0.181	0.124	-0.057	0.057
-0.10	-0.114327	0.557	0.401	0.042	-0.360	0.360
-0.11	-0.127400	0.486	0.487	0.027	-0.460	0.460
-0.12	-0.141629	0.419	0.562	0.019	-0.543	0.543
-0.12	dissoc ^f					
0.01	-0.115158	0.687	0.060	0.253	0.194	-0.194
0.05	-0.154214	0.617	0.016	0.368	0.352	-0.352
0.10	-0.230944	0.412	0.000	0.597	0.607	-0.607
0.11	-0.251498	0.373	0.000	0.637	0.646	-0.646
0.11	dissoc ^f					

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the H atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction. ^fAt this F_Z the molecule dissociates to the ions.

Table S16. Bond dissociation energy (D_e , kcal mol⁻¹) and RE_{CS} (kcal mol⁻¹) of HCl molecule calculated at different F_Z values (au). Total energies (E_t , au) at the optimal distance, 1.3 Å, and the long distance at 7.0Å.

	F_Z	De	RE _{CS}	Et at 1.3Å	E _t at 7.0Å	D _e ^a	De ^b
	0.0	84.86	19.57	-460.108414	-459.973181	103.63	91.29
	+0.02	93.45	33.46	-460.123318	-459.974387	112.35	99.08
	-0.02	77.63	2.35	-460.098091	-459.974383	98.33	85.02
^a D _e from	B3LYP	/6-311G(d	p) calcul	lations. ^b D _e from I	BOVB/6-311G(d	l,p) calcu	lations.

Table S17. Total energies (E_t , au), energy of covalent structure (E_{cov} , au), energy of H⁺ ⁻Cl ionic structure (E_{ion} , au) at optimal distance of 1.3Å and energy difference between covalent and ionic structures at 1.3Å and bond dissociation energy (D_e , kcal mol⁻¹).

5 ut 1.511	, at 1.511 and cond abboolation energy (Be, near mor).								
F_Z	Et	Ecov	Eion	$\Delta E_{\text{cov-ion}}$	De				
0.0	-460.108414	-460.077229	-459.896799	0.18043	84.86				
+0.02	-460.123318	-460.070000	-459.934307	0.13569	93.45				
-0.02	-460.098091	-460.087168	-459.861247	0.22592	77.63				

Table S18. Dependence of total energies (E, -459.0 au), weights of the covalent and ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (Å) for HCl; calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.02 au.

		Weights of the VB structures			VB c	harges
R	Е	H··Cl	H ⁻ ⁺ Cl ^a	H^+ - Cl^b	Hc	Cl ^d
1.10	-1.089687	0.692	0.059	0.248	0.189	-0.189
1.15	-1.105828	0.686	0.057	0.257	0.200	-0.200
1.20	-1.115943	0.681	0.054	0.266	0.212	-0.212
1.25	-1.121414	0.677	0.050	0.273	0.224	-0.224
1.30	-1.123318	0.674	0.046	0.280	0.234	-0.234
1.35	-1.122495	0.672	0.042	0.286	0.244	-0.244
1.40	-1.119610	0.671	0.038	0.291	0.253	-0.253
1.45	-1.115179	0.671	0.034	0.295	0.261	-0.261
1.50	-1.109620	0.672	0.031	0.297	0.267	-0.267
1.75	-1.074283	0.695	0.016	0.289	0.273	-0.273
2.00	-1.039631	0.746	0.007	0.247	0.240	-0.240
2.50	-0.995350	0.889	0.001	0.111	0.110	-0.110
3.00	-0.979558	0.970	0.000	0.030	0.030	-0.030
6.00	-0.974389	1.000	0.000	0.000	0.000	-0.000
7.00	-0.974387	1.000	0.000	0.000	0.000	0.000

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the H atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction.

Table S19. Dependence of total energies (E, -459.0 au), weights of the covalent and ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (Å) HCl; calculated with VBSCF/6-311G(d,p) level of theory at F_{Z} = -0.02 au.

		Weights of the VB structures			VB charges	
R	Е	H··Cl	H ⁻ ⁺ Cl ^a	H^+ - Cl^b	Hc	Cl ^d

1.10	-1.065784	0.708	0.116	0.175	0.059	-0.059
1.15	-1.081520	0.706	0.115	0.180	0.065	-0.065
1.20	-1.091278	0.705	0.113	0.182	0.069	-0.069
1.25	-1.096440	0.705	0.111	0.184	0.073	-0.073
1.30	-1.098091	0.708	0.109	0.184	0.075	-0.075
1.35	-1.097078	0.712	0.106	0.182	0.077	-0.077
1.40	-1.094068	0.717	0.103	0.180	0.077	-0.077
1.45	-1.089591	0.724	0.099	0.177	0.077	-0.077
1.50	-1.084067	0.732	0.096	0.172	0.076	-0.076
1.75	-1.050387	0.789	0.076	0.135	0.059	-0.059
2.00	-1.020037	0.859	0.054	0.087	0.033	-0.033
2.50	-0.986970	0.960	0.019	0.022	0.003	-0.003
3.00	-0.977207	0.991	0.005	0.004	0.001	-0.001
6.00	-0.974382	1.000	0.000	0.000	0.000	-0.000
7.00	-0.974383	1.000	0.000	0.000	0.000	0.000

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the H atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction.

Table S20. Dependence of total energies (E, -459.0 au), weights of the covalent and ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (Å); calculated with VBSCF/6-311G(d,p) level of theory at F_{Z} =-0.12 au.

		Weigh	Weights of the VB structures			harges
R	Е	H··Cl	H ⁻ ⁺ Cl ^a	H ⁺ ⁻ Cl ^b	Hc	Cl ^d
1.10	-1.071709	0.532	0.416	0.052	-0.364	0.364
1.15	-1.092595	0.520	0.432	0.048	-0.384	0.384
1.20	-1.108145	0.506	0.451	0.043	-0.408	0.408
1.25	-1.119707	0.491	0.471	0.038	-0.434	0.434
1.30	-1.128309	0.474	0.494	0.032	-0.462	0.462
1.35	-1.134734	0.454	0.520	0.027	-0.493	0.493
1.40	-1.139578	0.432	0.547	0.021	-0.525	0.525
1.45	-1.143303	0.406	0.577	0.017	-0.560	0.560
1.50	-1.146266	0.377	0.610	0.013	-0.597	0.597
1.75	-1.157969	0.202	0.796	0.002	-0.794	0.794
2.00	-1.176176	0.042	0.958	0.000	-0.958	0.958
2.50	-1.236559	0.000	1.000	0.000	-1.000	1.000
3.00	-1.310900	0.000	1.000	0.000	-1.000	1.000
3.5	-1.396067	0.000	1.000	0.000	-1.000	1.000
4.0	-1.487691	0.000	1.000	0.000	-1.000	1.000
5.0	-1.688056	0.000	1.000	0.000	-1.000	1.000

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the H atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction.

		Weigh	Weights of the VB structures			VB charges			
R	Е	H··Cl	H- +Cla	H ⁺ -Cl ^b	Hc	Cl ^d			
1.10	-1.188926	0.546	0.002	0.451	0.449	-0.449			
1.15	-1.209591	0.527	0.000	0.473	0.473	-0.473			
1.20	-1.224468	0.507	0.000	0.493	0.498	-0.498			
1.25	-1.234940	0.486	0.000	0.514	0.524	-0.524			
1.30	-1.242085	0.463	0.000	0.537	0.551	-0.551			
1.35	-1.246743	0.438	0.000	0.562	0.578	-0.578			
1.40	-1.249576	0.413	0.000	0.587	0.606	-0.606			
1.45	-1.251104	0.386	0.000	0.614	0.633	-0.633			
1.50	-1.251746	0.359	0.000	0.641	0.661	-0.661			
1.75	-1.251270	0.213	0.000	0.787	0.799	-0.799			
2.00	-1.258274	0.086	0.000	0.914	0.917	-0.917			
2.50	-1.306881	0.000	0.000	1.000	1.000	-1.000			
3.00	-1.377062	0.000	0.000	1.000	1.000	-1.000			

Table S21. Dependence of total energies (E, -459.0 au), weights of the covalent and ionic structures, and VB Mulliken charges of the atoms, on the H-Cl bond length (Å); calculated with VBSCF/6-311G(d,p) level of theory at F_{Z} =+0.11 au.

^aWeight of the ionic structure where negative charge on the H atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the H atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction.

Table S22. Dependence of total energies (E, -459.0 au) and Mulliken charges of the atoms on the H-Cl bond length (Å) for the covalent and the H⁺-Cl ionic-structures of HCl molecule; calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.11 au.

	H··C	1 structure	e	H ⁺ -C	l structur	e	
		VB ch	arges		VB cl	VB charges	
R	Е	Ha	Cl ^b	Е	Ha	Cl ^b	
1.10	-1.155022	0.000	0.000	-1.044808	1.000	-1.000	
1.15	-1.166308	0.000	0.000	-1.071531	1.000	-1.000	
1.20	-1.170502	0.000	0.000	-1.093460	1.000	-1.000	
1.25	-1.169270	0.000	0.000	-1.111753	1.000	-1.000	
1.30	-1.164057	0.000	0.000	-1.127263	1.000	-1.000	
1.35	-1.156089	0.000	0.000	-1.140619	1.000	-1.000	
1.40	-1.146382	0.000	0.000	-1.152292	1.000	-1.000	
1.45	-1.135744	0.000	0.000	-1.162637	1.000	-1.000	
1.50	-1.124695	0.000	0.000	-1.171936	1.000	-1.000	
1.75	-1.076643	0.000	0.000	-1.208962	1.000	-1.000	
2.00	-1.046331	0.000	0.000	-1.239616	1.000	-1.000	
2.50	-1.019908	0.000	0.000	-1.303209	1.000	-1.000	
3.00	-1.012352	0.000	0.000	-1.377034	1.000	-1.000	

^aCharge corresponds to the H atom placed in the Z<0 direction. ^bCharge corresponds to the Cl atom placed in the Z>0 direction.

		Weigh	nts of the VB st	ructures	, I	VB charg	es
F_Z	Е	Me ₃ C··Cl	Me ₃ C ⁻⁺ Cl ^a	Me ₃ C ⁺ ⁻ Cl ^b	Cc	Me ₃ C	Cl ^d
0.0	-0.279754	0.633	0.061	0.307	-0.081	0.221	-0.221
-0.01	-0.272266	0.655	0.080	0.265	-0.069	0.148	-0.148
-0.02	-0.270839	0.669	0.101	0.230	-0.084	0.081	-0.081
-0.03	-0.275661	0.677	0.122	0.201	-0.071	0.015	-0.015
-0.04	-0.286878	0.681	0.144	0.175	-0.060	-0.049	0.049
-0.05	-0.304863	0.682	0.168	0.150	-0.018	-0.114	0.114
-0.06	-0.329901	0.678	0.194	0.127	0.021	-0.179	0.179
-0.07	-0.362550	0.671	0.225	0.104	0.019	-0.247	0.247
-0.08	-0.403341	0.658	0.263	0.079	0.002	-0.319	0.319
-0.09	-0.451426	0.631	0.329	0.040	-0.056	-0.407	0.407
-0.10	dissoc ^e						
-0.12 ^f	-0.689120	0.448	0.540	0.012	-0.135	-0.703	0.703
0.01	-0.293494	0.597	0.040	0.363	-0.086	0.308	-0.308
0.02	-0.313648	0.521	0.018	0.460	-0.077	0.435	-0.435
0.025	-0.326292	0.349	0.001	0.650	-0.012	0.645	-0.645
0.03 ^g	-0.345687	0.298	0.000	0.702	-0.003	0.699	-0.699
0.03	dissoc ^e						

Table S23. F_Z (au) dependence of total energies (E, -616.0 au), weights of the covalent- and ionic structures and VB Mulliken charges of the atoms, for Me₃CCl; calculated with VBSCF/6-311G(d,p) level of theory. At each F_Z value the B3LYP/cc-pVTZ optimized geometry was used.

^aWeight of the ionic structure where negative charge on the C atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the Cl atom placed in the Z>0 direction. ^cCharge corresponds to the C atom placed in the Z<0 direction. ^dCharge corresponds to the Cl atom placed in the Z>0 direction. ^eAt this electric filed molecule is dissociated to the ions. ^fVB calculation with F_Z =-0.12 au was done with optimized geometry obtained with F_Z =-0.09 au. ^g VB calculation with F_Z =+0.03 au was done with optimized geometry obtained with F_Z =+0.025 au.

Table S24. Dependence of total energies (E, -615.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms, on the C-Cl bond length (Å) in Me₃CCl; calculated with VBSCF/6-311G(d,p) level of theory at F_Z =-0.02 au. At each R value the B3LYP/cc-pVTZ optimized geometry was used.

		Weights of the VB structures			1	VB charge	S
R	Е	Me ₃ C··Cl	Me ₃ C ⁻⁺ Cl ^a	Me ₃ C ⁺ ⁻ Cl ^b	C ^c	Me ₃ C	Cl ^d
1.70	-1.264437	0.659	0.116	0.225	-0.046	0.044	-0.044
1.75	-1.268758	0.663	0.109	0.228	-0.048	0.061	-0.061
1.80	-1.270695	0.668	0.103	0.230	-0.059	0.076	-0.076
1.85	-1.270757	0.673	0.096	0.232	-0.058	0.089	-0.089
1.90	-1.269378	0.678	0.089	0.233	-0.070	0.102	-0.102
1.95	-1.266873	0.685	0.082	0.233	-0.069	0.113	-0.113
2.00	-1.263494	0.691	0.076	0.233	-0.071	0.123	-0.123
2.05	-1.259508	0.699	0.070	0.232	-0.084	0.131	-0.131
2.10	-1.255069	0.706	0.064	0.230	-0.084	0.139	-0.139
2.15	-1.250320	0.714	0.058	0.228	-0.086	0.145	-0.145

2.5	-1.215334	0.788	0.027	0.185	-0.124	0.146	-0.145
3.0	-1.180949	0.935	0.008	0.057	-0.187	0.046	-0.046
3.5	-1.170471	0.991	0.002	0.009	-0.194	0.007	-0.007
4.0	-1.168154	0.998	0.000	0.002	-0.189	0.001	-0.001
5.0	-1.167338	1.000	0.000	0.000	-0.184	0.000	0.000
6.0	-1.167394	1.000	0.000	0.000	-0.171	0.000	0.000

^aWeight of the ionic structure where negative charge on the atom placed in the Z<0 direction. ^bWeight of the ionic structure where negative charge on the atom placed in the Z>0 direction. ^c Charge corresponds to the atom placed in the Z<0 direction. ^dCharge corresponds to the atom placed in the Z>0 direction.

Table S25. Dependence of total energies (E, -616.0 au), weights of the covalent and ionic structures and VB Mulliken charges of the atoms on the C-Cl bond length (Å) for Me₃CCl molecule calculated with VBSCF/6-311G(d,p) level of theory at F_Z =+0.02 au. At each R value the B3LYP/cc-pVTZ optimized geometry was used.

		Weig	Weights of the VB structures			VB charge	S		
R	Е	Me ₃ C··Cl	Me ₃ C ⁻⁺ Cl ^a	Me_3C^+ Cl^b	C ^c	Me ₃ C	Cl ^d		
1.70	-0.298497	0.599	0.058	0.343	-0.098	0.275	-0.275		
1.75	-0.305094	0.590	0.050	0.360	-0.090	0.300	-0.300		
1.80	-0.309488	0.581	0.043	0.377	-0.082	0.325	-0.325		
1.85	-0.312185	0.569	0.036	0.395	-0.076	0.350	-0.350		
1.90	-0.313580	0.556	0.030	0.414	-0.070	0.376	-0.376		
1.95	-0.314009	0.541	0.024	0.435	-0.063	0.403	-0.403		
2.00	-0.313747	0.523	0.019	0.458	-0.055	0.432	-0.432		
2.05	-0.313013	0.503	0.014	0.483	-0.046	0.462	-0.462		
2.10	-0.311988	0.479	0.010	0.511	-0.036	0.494	-0.494		
2.15	-0.310822	0.451	0.007	0.542	-0.023	0.528	-0.528		
2.5	-0.305841	0.208	0.000	0.793	0.083	0.790	-0.790		
3.0	-0.309657	0.044	0.000	0.956	0.128	0.954	-0.954		
3.5	-0.314260	0.000	0.000	1.000	0.112	0.986	-0.986		

^aWeight of the ionic structure where negative charge on the atom placed in the Z<0 direction. ^b Weight of the ionic structure where negative charge on the atom placed in the Z>0 direction. ^c Charge corresponds to the atom placed in the Z<0 direction. ^d Charge corresponds to the atom placed in the Z>0 direction.

CASSCF: CASSCF calculations were carried out with Gaussian 09.

The n=2 Level for H was calculated with CASSCF(1,5)/daug-cc-pV6Z/OEEF,

a)

Figure S2. Shape of 1S, 2S, 2Px, 2Py, 2Pz AO's of H atom and the energies of the corresponding states with $F_Z=0.0$ (a) and $F_Z=+0.1$ au (b) in the Z-direction calculated by CASSCF(1,5)/daug-cc-pV6Z level of theory. Note the forbidden mixing is removed.

Rotational Barrier for H₂C=CH₂: The rotational barrier (kcal mol⁻¹) for H₂C=CH₂ was calculated using B3LYP with cc-PCTZ and cc-pVQZ basis sets as well as with CASSCF(2,2) and CASSCF(12,13) with cc-pVTZ basis set using the F_Z values in Table S26. Z is along the C=C axis.

Table S26. Dependence of the barrier of rotation ΔE_{rot} (kcal mol⁻¹) on F_Z (au); calculated by B3LYP functional with different basis sets and with different CASSCF levels with cc-pVTZ basis set

	B3I	.YP	CASSCF		
F_Z	cc-pVTZ	cc-pVQZ	CAS(2/2)	CAS(12,13) ^a	
0.0	63.87	63.77	66.36	69.56	

0.0125	64.05	63.92	66.60	69.79
0.0250	65.54	64.32	67.26	70.48
0.0500	65.68	64.98	71.37	73.80

^aWith geometry from B3LYP/cc-pVTZ optimization

I. References for Methodology

^[S1] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

^[S2] P. C. Hiberty, S. Shaik, *Theor. Chem. Acc.* 2002, **108**, 255-272.

^[S3](a) L. Song, Z. Chen, F. Ying, J. Song, X. Chen, P. Su, Y. Mo, Q. Zhang, W. Wu, XMVB 2.1: An ab initio Non-orthogonal Valence Bond Program, Xiamen University, Xiamen 361005, China, 2015. (b) L. Song, Y. Mo, Q. Zhang, W. Wu, *J. Comput. Chem.* 2005, 26, 514-521. (c) Z. Chen, X. Chen, W. Wu, *J. Chem. Phys.* 2013, 138, 164120-12.

II. Literature on EEF & Electrostatics

1. Sources for Electrostatics: The book by Coulson^[S4] is a highly didactic mathematical treatise of the topic of electricity, including its history from the experiment of Thales of Miletus onwards. Page 11-72 deals with aspects of electrostatics theory.

The multipole expression for interaction of a molecular species with a uniform field, can be derived from the expression of the induced dipole-moment ($\mu_{ind,Z}$) as a function of the field strength F_Z in a given direction:^[S5]

 $\mu_{\text{ind},Z} = -dE/dF_Z \tag{S1}$

 $\mu_{ind,Z}$ is given as a Taylor series of terms, which include the dipole moment, μ_0 , (for *F*=0), the polarisability term, αF , which depends on the *F*, the hyperpolarisability which depends on βF^2 , etc. As we show in the text, the size of $\mu_{ind,Z}$ for the TS is much larger than μ_0 , and this increase is caused by increasing mixing of ionic and charge-transfer states into the wave function of the TS.

The interaction energy of the induced dipole with the field, is then the direct product, $\mu_{\text{ind,Z}} \cdot F_Z$ (see eq. B.5 in Textbox 1).^[S5]

References for Electrostatics

[S4] C. A. Coulson, *Electricity*, Oliver & Boyd, Interscience-Publishers, Inc. New York, 1953.

[S5] W. A. Atkins, *Quanta. A Handbook of Concepts,* Oxford University Press, New York, 1991, page 282. See also for example refs. 2 and 6, in (A) in the list below.

2. Additional References: Since the tutorial is limited to 50 references, we decided to include

a list of the literature, which we read in preparation of the tutorial. This list is sub-classified below

by topics.

A. Theoretical Studies on EEF

- 1. A. A. Arabiab and C. F. Matta, Phys. Chem. Chem. Phys., 2011, 13, 13738-13748.
- 2. P. M. De Biase, F. Doctorovich, D. H. Murgida, D. A. Estrin, *Chem. Phys. Lett.*, 2007, **434**, 121–126.
- P. M. De Biase, D. A. Paggi, F. Doctorovich, P. Hildebrandt, D. A. Estrin, D. H. Murgida, and M. A. Marti, *J. Am. Chem. Soc.*, 2009, **131**, 16248-16256.
- 4. P. J. Aittala, O. Cramariuc, and T. I. Hukka, J. Chem. Theory Comput. 2010, 6, 805-816.
- 5. J. P. Ceron-Carrasco, J. Cerezoa and D. Jacquemin, Phys. Chem. Chem. Phys., 2014, 16, 8243.
- 6. S. Sowlati-Hashjin and C. F. Matta, J. Chem. Phys., 2013, 139, 144101.
- 7. M. Calvaresi, R. V. Martinez, N. S. Losilla, J. Martinez, R. Garcia, and F. Zerbetto, J. Phys. Chem. Lett. 2010, 1, 3256–3260.
- 8. J. P. Ceron-Carrasco and D. Jacquemin, Phys. Chem. Chem. Phys., 2013, 15, 4548-4553.
- 9. P. Papanikolaou, P. Karafiloglou, Theor Chem Acc, 2010, 126, 213-222.
- 10. N. J. English and C. J. Waldron, Phys. Chem. Chem. Phys., 2015, 17, 12407-12440.

- 11. Q. K. Timerghazin and M. R. Talipov, J. Phys. Chem. Lett. 2013, 4, 1034-1038.
- 12. Y. Wei, X. Wang, X. Wang, Z. Tao, Y. Cuia and M. Yang, RSC Adv., 2016, 6, 24712-24718
- 13. B. Neog, N. Sarmah, R. Kar, P. K. Bhattacharyya, *Computational and Theoretical Chemistry* 2011, **976**, 60–67.
- 14. T. A. Rokob, I. Bako, A. Stirling, A. Hamza, and I. Papai", J. Am. Chem. Soc. 2013, 135, 4425–4437.
- 15. P. K. Bhattacharyya, Computational and Theoretical Chemistry 2015, 1057, 43–53.
- 16. B. Kang, H. Liu, D-J. Jang and J, Y. Lee, RSC Adv., 2014, 4, 26543-26551.
- 17. B. J. Dutta and P. K. Bhattacharyya, J. Phys. Chem. B, 2014, 118, 9573-9582.
- 18. K. Baruah and P. K. Bhattacharyya, J. Chem. Sci. 2015, 127, 1109–1117.
- 19. P. KaRrfiloglou, J Comput Chem 2006, 27, 1883–1891.
- 20. K. Leung, S. B. Rempe, P. A. Schultz, E. M. Sproviero, V. S. Batista, M. E. Chandross, and C. J. Medforth, J. Am. Chem. Soc., 2006, 128, 3659-3668
- 21. K. Seki, S. D. Traytak, and M. Tachiya, J. Chem. Phys., 2003, 118, 669-679.
- 22. Z. Viranyi, A. Szommer, A. Toth and D. Horvath, *Phys. Chem. Chem. Phys.*, 2004, **6**, 3396 3401.
- 23. Y. C. Choi, C. Pak, and K. S. Kim, J. Chem. Phys. 2006, 124, 094308.
- 24. A. Masunov, J. J. Dannenberg and R. H. Contreras, J. Phys. Chem. A 2001, 105, 4737-4740.
- 25. H. Kono, S. Koseki, M. Shiota and Y. Fujimura, J. Phys. Chem. A, 2001, 105, 5627-5636.
- 26. J. Tobik, A. D. Corso, S. Scandolo and E. Tosatti, Surface Science, 2004, 566-568, 644-649.
- 27. Y. Li, J. Zhao, X. Yin, and G. Yin, J. Phys. Chem. A, 2006, 110, 11130-11135.
- 28. S. P. de Visser, Inorg. Chem., 2006, 45, 9551-9557.
- 29. K. K. Bejagam, C. Kulkarni, S. J. George and S. Balasubramanian, *Chem. Commun.*, 2015, **51**, 16049–16052.
- 30. G. Füchsel, T. Klamroth, J. Dokić and P. Saalfrank, J. Phys. Chem. B, 2006, 110, 16337-16345.
- 31. X. Li, Y. Jiang, Y. Li and H. Liang, ChemPhysChem, 2006, 7, 1693–1698.
- 32. Z. J. Zhou, X. P. Li, Z. B. Liu, Z. R. Li, X. R. Huang and C. C. Sun, *J. Phys. Chem. A*, 2011, **115**, 1418–1422.
- 33. M. J. Purdue, J. M. D. MacElroy, D. F. O'Shea, M. O. Okuom and F. D. Blum, J. Chem. Phys., 2006, 124, 204904.
- 34. B. Schirmer and S. Grimme, Chem. Commun., 2010, 46, 7942-7944.
- A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu and M. H. M. Olsson, *Chem. Rev.*, 2006, 106, 3210-3235.
- 36. A. Warshel, Acc. Chem. Res., 1981, 14, 284-290
- 37. E. Carbonell, M. Duran, A. Lledbs and J. Bertrin, J. Phys. Chem. 1991, 95, 179-183.
- 38. T. Bredtmann, J. Manz and J. Zhao, J. Phys. Chem. A 2016, 120, 3142-3154.
- 39. A. Acocella, F. Carbone, F. Zerbetto, J. Am. Chem. Soc., 2010, 132, 12166-12167.
- 40. A. R. Finkelmann, M. T. Stiebritz and M. Reiher, Chem. Commun., 2013, 49, 8099-8101.
- 41. L. Huang, L. Massa, C. F. Matta, Carbon, 2014, 76, 310-320.

- 42. D. Bandrauk, E. S. Sedik and C. F. Matta, J. Chem. Phys., 2004, 121, 7764-7775.
- 43. C. F. Matta, J. Comput. Chem., 2014, 35, 1165-1198.
- 44. T. Umeyama, T. Miyata, A. C. Jakowetz, S. Shibata, K. Kurotobi, T. Higashino, T. Koganezawa, M. Tsujimoto, S. G'elinas, W. Matsuda, S. Seki, R. H. Friend, and H. Imahori, *Chem. Sci.*, 2017, 8, 181-188.
- 45. C. Foroutan-Nejad, M. Novák and R. Marek, J. Phys. Chem. C 2013, 117, 21509-21515.
- 46. C. Foroutan-nejad, V. Andrushchenko and M. Straka, *Phys. Chem. Chem. Phys.*, 2016, **18**, 32673-32677.
- 47. M. Novak, C. Foroutan-nejad and R. Marek, J. Chem. Theory Comput., 2016, 12, 3788-3795.
- 48. M. Novak, R. Marek and C. Foroutan-nejad, Chem. Eur. J., 2017, 23, 1-7.
- 49. E. Farajpour, B. Sohrabi and J. Beheshtian, Phys. Chem. Chem. Phys., 2016, 18, 7293-7299.
- 50. C. Foroutan-nejad and R. Marek, Phys. Chem. Chem. Phys., 2014, 16, 2508-2514.
- 51. M. Novak, C. Foroutan-Nejad and R. Marekab, *Phys. Chem. Chem. Phys.*, 2016, **18**, 30754-30760.
- 52. S. Grimme, H. Kruse, L. Goerigk and G. Erker, Angew. Chem. Int. Ed., 2010, 49, 1402-1405.
- 53. A. Hishikawa, A. Iwamae and K. Yamanouchi, Phys. Rev. Lett., 1999, 2, 1127-1130.
- 54. A. Natan, L. Kronik, H. Haick and R. T. Tung, Adv. Mater., 2007, 19, 4103-4117.
- 55. K. Bhattacharyya, S. Karmakar and A. Datta, *Phys. Chem. Chem. Phys.*, 2017, **19**, 22482–22486.
- 56. M. Sola, A. Lledos, M. Duran, J. Bertran, Jose-Luis M. Abboud, J. Am. Chem. Soc., 1991, 113, 2873-2879.
- 57. G. Maroulis, Reports in Theoretical Chemistry 2013, 2, 1-8.
- 58. S. K. Lee, A. G. Suits, H. B. Schlegel and W. Li, J. Phys. Chem. Lett., 2012, 3, 2541-2547.
- 59. S. D. Deshmukh, Y. Tsori, J. Chem. Phys., 2016, 144, 191102.
- 60. R. Kar and S. Pal, Theor Chem Acc., 2008, 120, 375–383.
- 61. P. Umari and A. Pasquarello, Int. J. Quantum Chem., 2005, 101, 666-670.
- 62. D. A. Paggi, D. F. Martín, A. Kranich, P. Hildebrandt, M. A. Martí and D. H. Murgida, *Electrochimica Acta*, 2009, **54**, 4963–4970.
- 63. G. Knizia and J. E. M. N. Klein, Angew. Chem. Int. Ed., 2015, 54, 1-6.
- 64. W. Grochala, Phys. Chem. Chem. Phys., 2012, 14, 14860-14868.
- 65. D. Deutsch, A. Natan, Y. Shapira, and L. Kronik, J. Am. Chem. Soc., 2007, 129, 2989-2997.
- 66. L. Rincón, J. R. Mora, F. J. Torres and R. Almeida, Chem. Phys., 2016, 477, 19-25.
- 67. K. Seki, S. D. Traytak and M. Tachiya, J. Chem. Phys., 2003, 118, 669-679.
- 68. Y. Li, J. Zhao, X. Yin, and G. Yin, J. Phys. Chem. A, 2006, 110, 11130–11135.
- 69. N. D. Gurav, S. P. Gejji, L. J. Bartolotti, R. K. Pathak, J. Chem. Phys., 2016, 145, 074302.
- 70. P. Papanikolaou and P. Karafiloglou, Theor Chem Acc., 2010, 126, 213-222.
- 71. N. J. English and D. A. Mooney, J. Chem. Phys., 2007, 126, 091105.
- 72. L. Astrakas, C. Gousias and M. Tzaphlidou, J. App. Phys., 2011, 109, 094702.
- 73. E. G. Marklund, T. Ekeberg, M. Moog, J. L. P. Benesch and C. Caleman, *J. Phys. Chem. Lett.*, 2017, **8**, 4540–4544.

- 74. X. Wang, Y. Li, X. He, S. Chen and J. Z. H. Zhang, J. Phys. Chem. A, 2014, 118, 8942-8952.
- 75. R. N. Pereira, J. A. Teixeira, and A. A. Vicente, J. Agric. Food Chem., 2011, 59, 11589-11597.
- 76. W. G. J. Hol, P. T. van Duijnen & H. J. C. Berendsen, Nature, 1978, 273, 443-446.
- 77. P. Th. Van Duijnen, B.Th. Thole and W. G. J. Hol, Biophysical Chemistry, 1979, 9, 273-280.
- 78. D. M. Hayes and P. A. Kollman, J. Am. Chem. Soc., 1976, 98, 7811-7816.
- 79. S. Shaik, S. P. de Visser, and D. Kumar, J. Am. Chem. Soc., 2004, 126, 11746-11749.
- 80. H. Hirao, H. Chen, M. A. Carvajal, Y. Wang and S. Shaik, J. Am. Chem. Soc., 2008, 130, 3319–3327.
- 81. R. Meir, H. Chen, W. Lai and S. Shaik, ChemPhysChem, 2010, 11, 301-310.
- 82. W. Lai, H. Chen, K.-B. Cho and S. Shaik, J. Phys. Chem. Lett., 2010, 1, 2082–2087.
- 83. K. B. Cho, H. Hirao, H. Chen, M. A. Carvajal, S. Cohen, E. Derat, W. Thiel and S. Shaik, *J. Phys. Chem. A*, 2008, **112**, 13128–13138.
- 84. A.M. Saita and F. Saija, F. Miller, Proc. Natl. Acad. Sci. 111, 13768-13773 (2014).
- 85. F. Che, S Ha, J-S. McEwen, J. Phys. Chem. C, 2015, 120, 14608-14620.

B. General Experimental Usages of EEF

- A. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez and M. L. Coote, *Nature*, 2016, 531, 88–91.
- 87. H. M. Aitken and M. L. Coote, Phys. Chem. Chem. Phys., 2018, Advance Article.
- 88. G. Gryn'ova, D. L. Marshall, S. J. Blanksby and M. L. Coote, Nat. Chem., 2013, 5, 474-481.
- 89. G. Gryn'ova and M. L. Coote, J. Am. Chem. Soc., 2013, 135, 15392-15403.
- 90. M. Klinska, L. M. Smith, G. Gryn'ova, M. G. Banwell and M. L. Coote, *Chem. Sci.*, 2015, 6, 5623–5627.
- 91. L. Zhang, E. Laborda, N. Darwish, B. B. Noble, J. H. Tyrell, S. Pluczyk, A. P. Le Brun, G. G. Wallace, J. Gonzalez, M. L. Coote and S. Ciampi, *J. Am. Chem. Soc.*, 2018, **140**, 766–774.
- 92. S. Ciampi, J. B. Harper and J. J. Gooding, Chem. Soc. Rev., 2010, 39, 2158.
- 93. F. Chen and N. J. Tao, Acc. Chem. Soc., 2009, 42, 429-438.
- 94. L. Zhang, Y. B. Vogel, B. B. Noble, V. R. Gonçales, N. Darwish, A. Le Brun, J. J. Gooding, G. G. Wallace, M. L. Coote and S. Ciampi, J. Am. Chem. Soc., 2016, 138, 9611–9619.
- 95. J. J. Gooding and S. Ciampi, Chem. Soc. Rev., 2011, 40, 2704-2718.
- 96. B. Xu and N. J. Tao, Science, 2003, 301, 1221-1223.
- 97. S. Ciampi, M. James, G. Le Saux, K. Gaus and J. Justin Gooding, J. Am. Chem. Soc., 2012, 134, 844–847.
- 98. S. Ciampi, G. Le Saux, J. B. Harper and J. J. Gooding, *Electroanalysis* 2008, 20, 1513–1519.
- 99. S. Ciampi, T. Böcking, K. A. Kilian, M. James, J. B. Harper and J. J. Gooding, *Langmuir*, 2007, **23**, 9320–9329.
- 100. N. Yanai, M. Sindoro, J. Yan and S. Granick, J. Am. Chem. Soc., 2013, 135, 34-37.
- 101. S. Ciampi and J. J. Gooding, Chem. A Eur. J., 2010, 16, 5961-5968.
- 102. C. C. A. Ng, A. Magenau, S. H. Ngalim, S. Ciampi, M. Chockalingham, J. B. Harper, K. Gaus and J. J. Gooding, *Angew. Chemie Int. Ed.*, 2012, **51**, 7706–7710.

- 103. Y. B. Vogel, L. Zhang, N. Darwish, V. R. Gonçales, A. Le Brun, J. J. Gooding, A. Molina, G. G. Wallace, M. L. Coote, J. Gonzalez and S. Ciampi, *Nat. Commun.*, 2017, 8, 1–35.
- 104. B. B. Noble, L. M. Smith and M. L. Coote, Polym. Chem., 2014, 5, 4974–4983.
- 105. M. D. Nothling, A. Ganesan, K. Condic-Jurkic, E. Pressly, A. Davalos, M. R. Gotrik, Z. Xiao, E. Khoshdel, C. J. Hawker, M. L. O'Mara, M. L. Coote and L. A. Connal, *Chem*, 2017, 2, 732– 745.
- 106. G. Gryn'Ova and M. L. Coote, Aust. J. Chem., 2017, 70, 367-372.
- 107. G. Gryn'ova, L. M. Smith and M. L. Coote, *Phys. Chem. Chem. Phys.*, 2017, **19**, 22678–22683.
- 108. Y. Li, N. L. Haworth, L. Xiang, S. Ciampi, M. L. Coote and N. Tao, J. Am. Chem. Soc. 2017, 139, 14699-14706.
- 109. V. M. Lau, C. F. Gorin and M. W. Kanan, Chem. Sci., 2014, 5, 4975-4979.
- 110. C. F. Gorin, E. S. Beh and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 186-189.
- 111. C. F. Gorin, E. S. Beh, Q. M. Bui, G. R. Dick and M. W. Kanan, J. Am. Chem. Soc., 2013, 135, 11257–11265.
- 112. V. M. Lau, W. C. Pfalzgraff, T. E. Markland and M. W. Kanan, J. Am. Chem. Soc., 2017, 139, 4035–4041.
- 113. A. Susarrey-Arce, R. M. Tiggelaar, M. Morassutto, J. Geerlings, R. G. P. Sanders, B. Geerdink, S. Schlautmann, L. Lefferts, A. Van Houselt and J. G. E. Gardeniers, *Sensors Actuators, B Chem.*, 2015, 220, 13–21.
- 114. A. Li, Y. Zi, H. Guo, Z. L. Wang and F. M. Fernández, *Nat. Nanotechnol.*, 2017, **12**, 481–487.
- 115. C. G. Vayenas, Catal. Letters, 2013, 143, 1085-1097.
- 116. Yu, J. Mark, F. Ernst, T. Wagner and R. Raj, J. Mater. Sci., 2006, 41, 7785-7797.
- 117. D. Sahoo, M. G. Quesne, S. P. De Visser and S. P. Rath, *Angew. Chemie Int. Ed.*, 2015, **54**, 4796–4800.
- 118. K. Yamanouchi, Science 2002, 295, 1659.
- 119. D. H. Murgida and P. Hildebrandt, Acc. Chem. Res., 2004, 37, 854-861.
- 120. K. R. Harikumar, J. C. Polanyi, P. A. Sloan, S. Ayissi and W. A. Hofer, *J. Am. Chem. Soc.*, 2006, **128**, 16791–16797.
- 121. J. Chen, M. A. Reed, A. M. Rawlett and J. M. Tour, Science, 2009, 286, 1550-1552.
- 122. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, *Science*, 1997, **278**, 252–254.
- 123. A. S. Blum, J. G. Kushmerick, D. P. Long, C. H. Patterson, J. C. Yang, J. C. Henderson, Y. Yao, J. M. Tour, R. Shashidhar and B. R. Ratna, *Nat. Mater.*, 2005, **4**, 167–172.
- 124. Troisi and M. A. Ratner, J. Am. Chem. Soc., 2002, 124, 14528-14529.
- 125. N. Giuseppone and J.-M. Lehn, Angew. Chemie, 2006, 118, 4735-4740.
- 126. A. Harada and K. Kataoka, J. Am. Chem. Soc., 2003, 125, 15306–15307.
- 127. A. Kranich, H. K. Ly, P. Hildebrandt and D. H. Murgida, J. Am. Chem. Soc., 2008, 130, 9844–9848.

- 128. R. J. Clarke, Adv. Colloid Interface Sci., 2001, 89-90, 263-281.
- 129. M. Wahadoszamen, T. Nakabayashi, S. Kang, H. Imahori and N. Ohta, *J. Phys. Chem. B*, 2006, **110**, 20354–20361.
- 130. A. M. Ara, T. Iimori, T. Yoshizawa, T. Nakabayashi and N. Ohta, J. Phys. Chem. B, 2006, 110, 23669–23677.
- 131. N. Ohta, M. Koizumi, S. Umeuchi, Y. Nishimura and I. Yamazaki, J. Phys. Chem., 1996, 100, 16466–16471.
- 132. H. Hasegawa, A. Hishikawa and K. Yamanouchi, Chem. Phys. Lett., 2001, 349, 57-63.
- 133. A. Hishikawa, A. Iwamae and K. Yamanouchi, Phys. Rev. Lett., 1999, 2, 1127-1130.
- 134. R. Schweitzer-Stenner, M. Levantino, A. Cupane, C. Wallace, M. Laberge and Q. Huang, J. *Phys. Chem. B*, 2006, **110**, 12155–12161.
- 135. V. Oklejas, C. Sjostrom and J. M. Harris, J. Phys. Chem. B, 2003, 107, 7788-7794.
- 136. V. Oklejas, C. Sjostrom and J. M. Harris, J. Am. Chem. Soc., 2002, 124, 2408-2409.
- 137. Y. W. Son, M. L. Cohen and S. G. Louie, Nature, 2006, 444, 347-349.
- 138. J. M. Pope and D. A. Buttry, J. Electroanal. Chem., 2001, 498, 75-86.
- 139. T. Sagara, M. Fukuda and N. Nakashima, J. Phys. Chem. B, 1998, 102, 521-527.
- 140. D. G. Hanken and R. M. Corn, Anal. Chem., 1997, 69, 3665-3673.
- 141. D. G. Hanken and R. M. Corn, Israel J. Chem. 1997, 37, 165-172.
- 142. S. Wang, S. Boussaad, S. Wong and N. J. Tao, Anal. Chem., 2000, 72, 4003–4008.
- 143. Y. Gafni, H. Weizman, J. Libman, A. Shanzer and I. Rubinstein, *Chem. A Eur. J.*, 1996, **2**, 759–766.
- 144. S. O. Kelley, J. K. Barton, N. M. Jackson, L. D. McPherson, A. B. Potter, E. M. Spain, M. J. Allen and M. G. Hill, *Langmuir*, 1998, 14, 6781–6784.
- 145. D. A. Offord, S. B. Sachs, M. S. Ennis, T. A. Eberspacher, J. H. Griffin, C. E. D. Chidsey and J. P. Collman, *J. Am. Chem. Soc.*, 1998, **120**, 4478–4487.
- 146. J. E. Hutchison, T. A. Postlethwaite, C. Chen, K. W. Hathcock, R. S. Ingram, W. Ou, R. W. Linton, R. W. Murray, *Langmuir*, 1997, **13**, 2143–2148.
- 147. T. A. Postlethwaite, J. E. Hutchison, K. W. Hathcock and R. W. Murray, *Langmuir*, 1995, **11**, 4109–4116.
- 148. G. Che, A. Manivannan and C. R. Cabrera, *Phys. A Stat. Mech. its Appl.*, 1996, **231**, 304–316.
- 149. E. Sibottier, S. Sayen, F. Gaboriaud and A. Walcarius, Langmuir, 2006, 22, 8366-8373.
- 150. I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich and I. Rubinstein, J. Am. Chem. Soc., 2007, **129**, 84–92.
- 151. K. H. Schoenbach, R. P. Joshi, J. F. Kolb, N. Chen, M. Stacey, P. F. Blackmore, E. S. Buescher and S. J. Beebe, *Proc. IEEE*, 2004, **92**, 1122–1136.
- 152. B. Schuler, S. Fatayer, F. Mohn, N. Moll, N. Pavlieèk, G. Meyer, D. Penã and L. Gross, *Nat. Chem.*, 2016, **8**, 220–224.
- 153. N. Pavliček, B. Schuler, S. Collazos, N. Moll, D. Pérez, E. Guitián, G. Meyer, D. Peña and L. Gross, *Nat. Chem.*, 2015, 7, 623–628.

- 154. V. Oklejas, R. H. Uibel, R. Horton and J. M. Harris, Anal. Chem., 2008, 80, 1891–1901.
- 155. G. D. Harzmann, R. Frisenda, H. S. J. Van Der Zant and M. Mayor, *Angew. Chemie Int. Ed.*, 2015, **54**, 13425–13430.
- 156. J. Deng, Z. Chang, T. Zhao, X. Ding, J. Sun and J. Z. Liu, J. Am. Chem. Soc., 2016, 138, 4772–4778.
- 157. J. Jiang, Q. Liang, S. Zhang, R. Meng, C. Tan, Q. Yang, X. Sun, H. Ye and X. Chen, *J. Mater. Chem. C*, 2016, **4**, 8962–8972.
- 158. M. Gruber, V. Davesne, M. Bowen, S. Boukari, E. Beaurepaire, W. Wulfhekel and T. Miyamachi, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2014, **89**, 1–9.
- 159. S. H. Cho, J. Shim, S. H. Yun and S. H. Moon, Appl. Catal. A Gen., 2008, 337, 66-72.
- 160. Y. Choi and S. T. Yau, Anal. Chem., 2009, 81, 7123-7126.
- 161. B. J. Sussman, D. Townsend, M. Yu. Ivanov, A. Stolow, Science, 2006, 314, 278-281.
- 162. M. Alemani, M. V. Peters, S. Hecht, K. H. Rieder, F. Moresco and L. Grill, J. Am. Chem. Soc., 2006, 128, 14446–14447.
- 163. T. Asano, T. Okada, S. Shinkai, K. Shigematsu, Y. Kusano and O. Manabe, J. Am. Chem. Soc., 1981, 103, 5161–5165.
- 164. N. Darwish, A. C. Aragonès, T. Darwish, S. Ciampi and I. Díez-Pérez," *Nano Lett.*, 2014, 14, 7064–7070.
- 165. S. Ciampi, P. K. Eggers, G. Le Saux, M. James, J. B. Harper and J. J. Gooding, *Langmuir*, 2009, **25**, 2530–2539.
- 166. T. Enoto, Y. Wada, Y. Furuta, K. Nakazawa, T. Yuasa, K. Okuda, K. Makishima, M. Sato, Y. Sato, T. Nakano, D. Umemoto and H. Tsuchiya, *Nature*, 2017, **551**, 481–484
- 167. A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer and J. Caro, *Science*, 2017, **358**, 347–351.
- 168. G. Velpula, J. Teyssandier, S. De Feyter and K. S. Mali, ACS Nano, 2017, 11, 10903–10913.
- 169. B. Borca, T. Michnowicz, R. Pétuya, M. Pristl, V. Schendel, I. Pentegov, U. Kraft, H. Klauk, P. Wahl, R. Gutzler, A. Arnau, U. Schlickum and K. Kern, *ACS Nano*, 2017, **11**, 4703–4709.
- 170. P. Schyman, W. Lai, H. Chen, Y. Wang, and S. Shaik, J. Am. Chem. Soc., 2011, **133**, 7977–7984.
- 171. M. Akamatsu, N. Sakai and S. Matile, J. Am. Chem. Soc., 2017, 139, 6558-6561.
- 172. Y. Zhao, Y. Domoto, E. Orentas, C. Beuchat, D. Emery, J. Mareda, N. Sakai and S. Matile, *Angew. Chemie Int. Ed.*, 2013, **52**, 9940–9943.
- 173. F. Blatter and H. Frei, J. Am. Chem. Soc., 1994, 116, 1812-1820.
- 174. F. Blatter, H. Sun, S. Vasenkov and H. Frei, "Photocatalyzed oxidation in zeolite cages", *Catal. Today*, 1998, **41**, 297–309.
- 175. P. Sharma and T. S. Bhatti, Energy Convers. Manag., 2010, 51, 2901–2912.
- 176. S. Baldelli, Acc. Chem. Res., 2008, 41, 421-431.
- 177. D. M. Kolb, Angew. Chem. Int. Ed. Engl., 2001, 40, 1162-1181.
- 178. T. Ryu, Y. Lansac and Y. H. Jang, Nano Lett., 2017, 17, 4061-4066.
- 179. F. Che, S. Ha and J. S. McEwen, Angew. Chemie Int. Ed., 2017, 56, 3557-3561.

- 180. M. Beye, H. Öberg, H. Xin, G. L. Dakovski, M. Dell'Angela, A. Föhlisch, J. Gladh, M. Hantschmann, F. Hieke, S. Kaya, D. Kühn, J. LaRue, G. Mercurio, M. P. Minitti, A. Mitra, S. P. Moeller, M. L. Ng, A. Nilsson, D. Nordlund, J. Nørskov, H. Öström, H. Ogasawara, M. Persson, W. F. Schlotter, J. A. Sellberg, M. Wolf, F. Abild-Pedersen, L. G. M. Pettersson and W. Wurth, J. Phys. Chem. Lett., 2016, 7, 3647–3651.
- 181. L. R. Dalton, P. A. Sullivan and D. H. Bale, Chem. Rev., 2010, 110, 25-55.
- 182. V. Bachler and W. Gärtner, Photochem. Photobiol., 2016, 92, 399-409.
- 183. D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata and T. Aida, *Angew. Chemie Int. Ed.*, 2011, **50**, 7865–7869.
- 184. I. Dozov, E. Paineau, P. Davidson, K. Antonova, C. Baravian, I. Bihannic and L. J. Michot, *J. Phys. Chem. B*, 2011, **115**, 7751–7765.
- 185. J. Y. Yan and G. N. Patey, J. Phys. Chem. Lett., 2011, 2, 2555–2559.
- 186. Z. Liu and J. Ma, J. Phys. Chem. A, 2011, 115, 10136-10145
- 187. G. M. Lari, B. Puértolas, M. Shahrokhi, N. López and J. Pérez-Ramírez, Angew. Chemie Int. Ed., 2017, 56, 1775–1779.
- 188. P. C. Sevinc, B. Dhital, V. Govind Rao, Y. Wang and H. P. Lu, J. Am. Chem. Soc., 2016, 138, 1536–1542.
- 189. S. Sriram, M. Bhaskaran, S. Chen, S. Jayawardhana, P. R. Stoddart, J. Z. Liu, N. V. Medhekar, K. Kalantar-Zadeh and A. Mitchell, *J. Am. Chem. Soc.*, 2012, **134**, 4646–4653.
- 190. Q. N. Zheng, X. H. Liu, T. Chen, H. J. Yan, T. Cook, D. Wang, P. J. Stang and L. J. Wan, *J. Am. Chem. Soc.*, 2015, **137**, 6128–6131.
- 191. M. U. Musheev, Y. Filiptsev, V. Okhonin, and S. N. Krylov, J. Am. Chem. Soc., 2010, 132, 13639–13641
- 192. S. Dhara, E. J. Mele and R. Agarwal, Science, 2015, 349, 726.
- 193. H. Li, T. A. Su, V. Zhang, M. L. Steigerwald, C. Nuckolls and L. Venkataraman, J. Am. Chem. Soc., 2015, **137**, 5028–5033.
- 194. L. D. Chen, M. Urushihara, K. Chan and J. K. Nørskov, ACS Catal., 2016, 6, 7133-7139.
- 195. K. Chan and J. K. Nørskov, J. Phys. Chem. Lett., 2016, 7, 1686–1690.
- 196. C. Shi, K. Chan, J. S. Yoo and J. K. Nørskov, Org. Process Res. Dev., 2016, 20, 1424-1430.
- 197. R. Wu, R. Chen, C. Qin, Y. Gao, Z. Qiao, G. Zhang, L. Xiao and S. Jia, *Chem. Commun.*, 2015, **51**, 7368–7371.
- 198. D. Bratko, C. D. Daub, K. Leung and A. Luzar, J. Am. Chem. Soc., 2007, 129, 2504-2510.
- 199. R. Weiss and F. G. Pühlhofer, J. Am. Chem. Soc., 2007, 129, 547-553.
- 200. X. Li, Y. Jiang, Y. Li and H. Liang, ChemPhysChem, 2006, 7, 1693-1698.
- 201. N. Bonnet and N. Marzari, Phys. Rev. Lett., 2013, 110, 1-5.
- 202. H. Li, N. T. Kim, T. A. Su, M. L. Steigerwald, C. Nuckolls, P. Darancet, J. L. Leighton and L. Venkataraman, J. Am. Chem. Soc., 2016, 138, 16159–16164.
- 203. S. Chen, Y. Itoh, T. Masuda, S. Shimizu, J. Zhao, J. Ma, S. Nakamura, K. Okuro, H. Noguchi, K. Uosaki, T. Aida, *Science*, 2015, 348, 555-559.
- 204. A. Vallribera, E. Molins and L. Martín, New J. Chem., 2016, 4, 0-4.

- 205. S. Ciampi, J. B. Harper and J. J. Gooding, Chem. Soc. Rev., 2010, 39, 2158.
- 206. F. Chen and N. J. Tao, Acc. Chem. Soc., 2009, 42, 429-438.
- 207. L. Zhang, Y. B. Vogel, B. B. Noble, V. R. Gonçales, N. Darwish, A. Le Brun, J. J. Gooding, G. G. Wallace, M. L. Coote and S. Ciampi, *J. Am. Chem. Soc.*, 2016, **138**, 9611–9619.
- 208. J. J. Gooding and S. Ciampi, Chem. Soc. Rev., 2011, 40, 2704-2718.
- 209. B. Xu and N. J. Tao, Science, 2003, 301, 1221–1223.
- 210. S. Ciampi, M. James, G. Le Saux, K. Gaus and J. Justin Gooding, J. Am. Chem. Soc., 2012, 134, 844–847.
- 211. S. Ciampi, G. Le Saux, J. B. Harper and J. J. Gooding, *Electroanalysis* 2008, 20, 1513–1519.
- 212. S. Ciampi, T. Böcking, K. A. Kilian, M. James, J. B. Harper and J. J. Gooding, *Langmuir*, 2007, **23**, 9320–9329.
- 213. N. Yanai, M. Sindoro, J. Yan and S. Granick, J. Am. Chem. Soc., 2013, 135, 34-37.
- 214. S. Ciampi and J. J. Gooding, Chem. A Eur. J., 2010, 16, 5961-5968.
- 215. C. C. A. Ng, A. Magenau, S. H. Ngalim, S. Ciampi, M. Chockalingham, J. B. Harper, K. Gaus and J. J. Gooding, *Angew. Chemie Int. Ed.*, 2012, **51**, 7706–7710.
- 216. Y. B. Vogel, L. Zhang, N. Darwish, V. R. Gonçales, A. Le Brun, J. J. Gooding, A. Molina, G. G. Wallace, M. L. Coote, J. Gonzalez and S. Ciampi, *Nat. Commun.*, 2017, 8, 1–35.
- 217. B. B. Noble, L. M. Smith and M. L. Coote, Polym. Chem., 2014, 5, 4974-4983.
- 218. M. D. Nothling, A. Ganesan, K. Condic-Jurkic, E. Pressly, A. Davalos, M. R. Gotrik, Z. Xiao, E. Khoshdel, C. J. Hawker, M. L. O'Mara, M. L. Coote and L. A. Connal, *Chem*, 2017, 2, 732– 745.
- 219. G. Gryn'Ova and M. L. Coote, Aust. J. Chem., 2017, 70, 367-372.
- 220. G. Gryn'ova, L. M. Smith and M. L. Coote, *Phys. Chem. Chem. Phys.*, 2017, **19**, 22678–22683.
- 221. Y. Li, N. L. Haworth, L. Xiang, S. Ciampi, M. L. Coote and N. Tao, *J. Am. Chem. Soc.* 2017, **139**, 14699-14706.
- 222. S. W. Hla, G. Meyer and K. H. Rieder, ChemPhysChem, 2001, 2, 361-366.
- 223. stark1913
- 224. J. stark ANNALEN DER PHYSIK
- 225. G. Reecht, C. Lotze, D. Sysoiev, T. Huhn and K. J. Franke, J. Phys. Condens. Matter, 2017, 29, 294001.
- 226. J. W. Gadzuk, Surface Science, 1995, 342, 345-358.
- 227. B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson and B. I. Lundqvist, *Phys. Rev. Lett.*, 1997, **78**, 4410–4413.
- 228. L. Gross, B. Schuler, N. Pavlic'ek, S. Fatayer, Z. Majzik, N. Moll, D. PeÇa, and G. Meyer, *Angew. Chem. Int. Ed.* 2018, **57**, 2 24.
- 229. How to Build and Race a Fast Nanocar: G.J. Simpson, V. Garcia-Lopz, P. Petermeier, L. Grill, J. M. Tour, *Nature Nanotech.*, **12**, 604-606 (2017).
- 230. Direct-Current Triboelectricity Generation by Sliding Schottky Nanocontact on MoS₂ Multilayers: J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee, Z. Li, Z. Hu, J. Lee, T. Thundat, *Nature Nanotech. Commun.*, **13**, 112-1166 (2018).

231. L. Martin, E. Molins, A. Vallribera, New J. Chem., 2016, 40, 10208-10212.

C. Electric Fields for Chiral Charge Distributions

- 232. J. Hoffman and W. Kuczynski, Ferroelectr. Lett. Sect., 1985, 4, 89-94.
- 233. W. T. Deng and X. G. Huang, *Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys.*, 2015, **742**, 296–302.
- 234. S. Ebihara and K. Fukushima, Phys. Rev., B 2016, 93, 155107.
- 235. M. Eckshtain-Levi, E. Capua, S. Refaely-Abramson, S. Sarkar, Y. Gavrilov, S. P. Mathew, Y. Paltiel, Y. Levy, L. Kronik and R. Naaman, *Nat. Commun.*, 2016, 7, 1–9.
- 236. R. Naaman and D. H. Waldeck, Annu. Rev. Phys. Chem., 2015, 66, 263-281.
- 237. J. P. King, T. F. Sjolander and J. W. Blanchard, J. Phys. Chem. Lett., 2017, 8, 710-714.

D. Spectroscopy

- 238. S. H. Cao, T. T. Xie, W. P. Cai, Q. Liu and Y. Q. Li, J. Am. Chem. Soc., 2011, 133, 1787– 1789.
- 239. A. Gorski, A. Starukhin and S. S. Stavrov, J. Radioanal. Nucl. Chem., 2017, 313, 141-144.
- 240. R. M. Hochstrasser, Acc. Chem. Res., 1973, 6, 263-269.
- 241. D. S. Gottfried, M. A. Steffen and S. G. Boxer, Science, 1991, 251, 662-665.
- 242. D. S. Gottfried, J. W. Stocker and S. G. Boxer, Biochim. Biophys. Acta, 1991, 1059, 63-75.
- 243. M. A. Steffen, K. Lao and S. G. Boxer, Science, 1994, 264, 810-6.
- 244. S. M. Decatur, S. G. Boxer, *Biochemical and Biophysical Research Communications*, 1995, **212**, 159-164.
- 245. E. S. Park, S. S. Andrews, R. B. Hu and S. G. Boxer, J. Phys. Chem. B 1999, 103, 9813-9817.
- 246. E. S. Park, M. R. Thomas and S. G. Boxer, J. Am. Chem. Soc., 2000, 122, 12297-12303.
- 247. E. S. Park, S. G. Boxer, J. Phys. Chem. B, 2002, 106, 5800-5806.
- 248. B. E. Cohen, T. B. McAnaney, E. S. Park, Y. N. Jan, S. G. Boxer and L. Y. Jan, *Science*, 2002, **296**, 1700–1703.
- 249. I. T. Suydam and S. G. Boxer, Biochemistry, 2003, 42, 12050-12055.
- 250. P. A. Sigala, A. T. Fafarman, P. E. Bogard, S. G. Boxer and D. Herschlag, *J. Am. Chem. Soc.*, 2007, **129**, 12104–12105.
- 251. L. J. Webb and S. G. Boxer, Biochemistry, 2008, 47, 1588-1598.
- 252. Steven G. Boxer, J. Phys. Chem. B 2009, 113, 2972–2983.
- 253. W. Childs and S. G. Boxer, Biochemistry, 2010, 49, 2725–2731.
- 254. W. Childs and S. G. Boxer, J. Am. Chem. Soc., 2010, 132, 6474-6480.
- 255. A. T. Fafarman, P. A. Sigala, D. Herschlag and S. G. Boxer, J. Am. Chem. Soc., 2010, 132, 12811–12813.
- 256. A. T. Fafarman and S. G. Boxer, J. Phys. Chem. B, 2010, 114, 13536-13544.
- 257. N. M. Levinson, E. E. Bolte, C. S. Miller, S. A. Corcelli and S. G. Boxer, *J. Am. Chem. Soc.*, 2011, **133**, 13236–13239.
- 258. M. Saggu, N. M. Levinson and S. G. Boxer, J. Am. Chem. Soc., 2011, 133, 17414-17419.

- 259. S. D. Fried and S. G. Boxer, J. Phys. Chem. B, 2012, 116, 690-697
- 260. N. M. Levinson, S. D. Fried and S. G. Boxer, J. Phys. Chem. B, 2012, 116, 10470-10476.
- 261. N. M. Levinson and S. G. Boxer, PLoS One, 2012, 7, e29828.
- 262. S. Bagchi, S. D. Fried and S. G. Boxer, J. Am. Chem. Soc., 2012, 134, 10373-10376.
- 263. S. K. Jha, M. Ji, K. J. Gaffney and S. G. Boxer, J. Phys. Chem. B, 2012, 116, 11414–11421.
- 264. M. Saggu, N. M. Levinson and S. G. Boxer, J. Am. Chem. Soc., 2012, 134, 18986-18997.
- 265. P. A. Sigala, A. T. Fafarman, J. P. Schwans, S. D. Fried, T. D. Fenn, J. M. M. Caaveiro, B. Pybus, D. Ringe, G. A. Petsko, S. G. Boxer and D. Herschlag, *Proc. Natl. Acad. Sci.*, 2013, 110, E2552–E2561.
- 266. S. D. Fried, S. Bagchi and S. G. Boxer, J. Am. Chem. Soc., 2013, 135, 11181-11192.
- 267. N. M. Levinson and S. G. Boxer, Nat. Chem. Biol., 2014, 10, 127-132.
- 268. L. Wang, S. D. Fried, S. G. Boxer and T. E. Markland, *Proc. Natl. Acad. Sci.*, 2014, **111**, 18454–18459.
- 269. S. D. Fried and S. G. Boxer, Acc. Chem. Res., 2015, 48, 998-1006.
- 270. Y. Wu, S. D. Fried and S. G. Boxer, *Biochemistry*, 2015, 54, 7110-7119.
- 271. S. Franzen, R. F. Goldstein and S. G. Boxer, J. Phys. Chem., 1990, 94, 5135-5149.
- 272. K. Lao, S. Franzen, R. J. Stanley, D. G. Lambright, and S. G. Boxer, J. Phys. Chem., 1993, 97, 13165-13171.
- 273. S. Franzen and S. G. Boxer, J. Phys. Chem., 1993, 97, 6304-6318.
- 274. T. P. Treynor and S. G. Boxer, J. Phys. Chem. A, 2004, 108, 1764-1778.
- 275. H. Zhou and S. G. Boxer, J. Phys. Chem. B, 1998, 102, 9139-9147.
- 276. K. Q. Lao, S. Franzen, M. Steffen, D. Lambright, R. Stanley and S. G. Boxer, *Chem. Phys.*, 1995, **197**, 259–275.
- 277. S. D. Fried and S. G. Boxer, Annu. Rev. Biochem., 2017, 86, 387-415.
- 278. S. Franzen, K. Lao and S. G. Boxer, Chem. Phys. Lett., 1992, 197, 380-388.
- 279. S. H. Schneider, H. T. Kratochvil, M. T. Zanni and S. G. Boxer, *J. Phys. Chem. B*, 2017, **121**, 2331–2338.

E. Measuring Local EF in Proteins

- 280. J. W. Park and Y. M. Rhee, J. Am. Chem. Soc., 2016, 138, 13619-13629,
- 281. I. T. Suydam, C. D. Snow, V. S. Pande, S. G. Boxer, Science, 2006, 313, 200-204.
- 282. A. T. Fafarman, L. J. Webb, J. I. Chuang and S. G. Boxer, J. Am. Chem. Soc., 2006, 128, 13356–13357.
- 283. P. Abbyad, X. Shi, W. Childs, T. B. McAnaney, B. E. Cohen and S. G. Boxer, *J. Phys. Chem. B*, 2007, **111**, 8269–8276.
- 284. J. D. Slocum and L. J. Webb, J. Am. Chem. Soc., 2016, 138, 6561-6570.
- 285. S. D. Fried, S. Bagchi, S. G. Boxer, Science, 2014, 346, 1510-1514.

F. EEF effects on Ionic Liquids

286. R. S. Anaredy and S. K. Shaw, Langmuir, 2016, 32, 5147-5154.

- 287. Y. Zhao, K. Dong, X. Liu, S. Zhang, J. Zhu and J. Wang, Mol. Simul., 2012, 38, 172–178.
- 288. G. Xie, J. Luo, S. Liu, D. Guo and C. Zhang, Langmuir, 2010, 26, 1445–1448.
- 289. W. Zhao, F. Leroy, B. Heggen, S. Zahn, B. Kirchner, S. Balasubramanian and F. Müller-Plathe, J. Am. Chem. Soc., 2009, 131, 15825–15833.
- 290. K. Kadota, A. Shimosaka, Y. Shirakawa and J. Hidaka, J. Nanoparticle Res., 2007, 9, 377–387.
- 291. Y. Wang, J. Phys. Chem. B, 2009, 113, 11058-11060.
- 292. Z. Futera and N. J. English, J. Chem. Phys., 2017, 147, 031102.
- 293. S. Millefiorini, A. H. Tkaczyk, R. Sedev, J. Efthimiadis and J. Ralston, *J. Am. Chem. Soc.*, 2006, **128**, 3098–3101.
- 294. S. J. Suresh, A. L. Prabhu and A. Arora, J. Chem. Phys., 2007, 126, 134502.
- 295. G. L. Burrell, I. M. Burgar, Q. Gong, N. F. Dunlop and F. Separovic, *J. Phys. Chem. B*, 2010, **114**, 11436–11443.
- 296. H. Liu, Y. Liub and J. Li, Phys. Chem. Chem. Phys., 2010, 12, 1648.
- 297. S. Wei, C. Zhong and H. Su-Yi, Mol. Simul., 2005, 31, 555-559.
- 298. G. Xie, J. Luo, D. Guo and S. Liu, Appl. Phys. Lett., 2010, 96, 2008–2011.
- 299. G. L. Burrell, N. F. Dunlop and F. Separovic, Soft Matter, 2010, 6, 2080.
- 300. M. Sha, D. Niu, Q. Dou, G. Wu, H. Fang and J. Hu, Soft Matter, 2011, 7, 4228.
- 301. N. J. English and D. A. Mooney, J. Phys. Chem. B, 2009, 113, 10128-10134.
- 302. S. Vaitheeswaran, H. Yin and J. C. Rasaiah, J. Phys. Chem. B, 2005, 109, 6629-6635.

G. Alignments by EEF

- 303. B. Friedrich, D. P. Pullman and D. R. Herschbach, J. Phys. Chem., 1991, 95, 8118-8129.
- 304. B. Friedrich and D. R. Herschbach, Nature, 1991, 353, 412-414.
- 305. S. Y. T. Van De Meerakker, H. L. Bethlem, N. Vanhaecke and G. Meijer, *Chem. Rev.*, 2012, **112**, 4828–4878.
- 306. F. Filsinger, G. Meijer, H. Stapelfeldt, H. N. Chapman and J. Küpper, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2076–2087.
- 307. M. Schnell and G. Meijer, Angew. Chemie Int. Ed., 2009, 48, 6010-6031.
- 308. E.G. Marklund, T. Ekberg, M. Moog, J.L.P. Benesch and C. Caleman, *J. Phys. Chem. Lett.* 2017, **8**,4540-44

H. EEF in Bees and in Brain

- 309. D. Clarke, H. Whitney, G. Sutton and D. Robert, Science, 2013, 340, 66-69.
- 310. B. Krause and R. C. Kadosh, Developmental Cognitive Neuroscience, 2013, 6, 176-194.

I. Forbidden Reactions

311. Due to the limit of 50 references, we had unfortunately to remove the classical work on Forbidden and Allowed reactions, which is necessary to understand how to overcome the forbidden orbital mixing

by OEEF: R.B. Woodward and R. Hoffmann, *The Conservation of Orbital Symmetry*, Verlag Chemie, GmbH, Weinheim, Germany, **1970**.

J. Recent Theoretical Studies

- 312. G. Cassone, F. Pietrucci, F. Saija, F. Guyot and A.M. Saitta, Chem. Sci., 2017, 8, 2329-2336.
- 313. G. Cassone, F. Pietrucci, F. Saija, F. Guyot, J. Sponer, J. E. Sponer and A.M. Saitta, *Sci. Rep.*, 2017, 7, 6901-8.
- 314. F. Che, J.T. Gray, S. Ha, N. Kruse, S.L. Scott, J-S. McEwen, ACS Catal., 2018, 8, 5153-5174.