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Figure S1. Various post-polymerization modifications of PDMAEMA. SN2 alkylation with neutral alkyl halides 
to form a cationic polyelectrolyte (red arrow). SN2 alkylation with anionic alkyl halides to form betaines, in this 
case a poly(sulfobetaine) (green arrow). Ring opening of sultones, 2-oxo-1,3,2-dioxaphospholanes and strained 
lactones (blue arrows) to form the corresponding poly(sulfobetaine), poly(phosphobetaine) and 
poly(carboxybetaine). Note that the 2-oxo-1,3,2-dioxaphospholane in question must be first prepared from 2-
chloro-2-oxo-1,3,2-dioxaphospholane and the corresponding alcohol. For a more detailed discussion of these 
reactions, including their limitations, the reader is referred to the following texts.1, 2
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Figure S2. Structure and resonance forms of the poly(ammonio alkoxydicyanoethenolate)s studied by Pujol-
Fortin and Galin.3
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Discussion concerning the immunogenicity of polyzwitterions vs PEG

With the rise of PEGylated therapeutics being used in the clinic, there has been growing 
concern regarding the immunogenicity of PEG, with PEG antibodies being observed in human 
patients, leading to reduced activity of the therapeutic and adverse side effects.4 There is 
evidence to suggest that polyzwitterions such as polycarboxybetaine (PCBs) lead to an overall 
reduction in polymer-specific antibodies (anti-PCB), compared with PEG (anti-PEG).5 
However one study by Elsabahy and Wooley et al. showed that both PCB and PEG-coated 
nanoparticles could induce the expression of cytokines in vitro and in vivo, with PCB being 
more immunotoxic than PEG.6 Therefore, whilst polyzwitterions do show some promise as 
PEG alternatives, further detailed studies, such as those discussed here, are required to fully 
elucidate their potential application and risk in nanomedicine and biotechnology.
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