Binary ZnO/Zn-Cr nanospinel catalyst prepared by hydrothermal method for isobutanol synthesis from syngas

Xiaofeng Gao,^{a,b} Yingquan Wu,^a Tao Zhang,^a LiyanWang,^{a,b} Xiaoli Li,^{a,b} Hongjuan Xie^a and Yisheng Tan^{*a,c}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese
Academy of Sciences, Taiyuan 030001, China. Email: tan@sxicc.ac.cn. Fax: +86 351
4044287.Tel: +86 351 4044287.

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c National Engineering Research Center for Coal-Based Synthesis, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

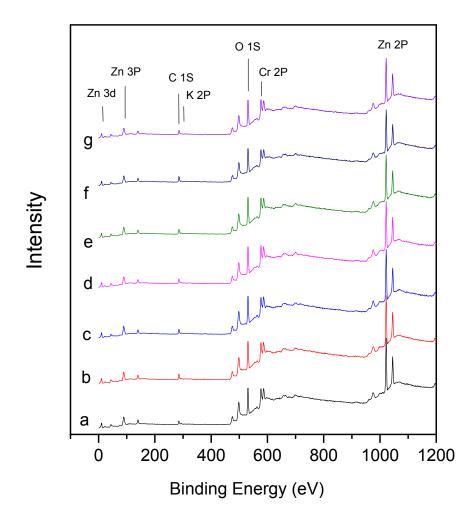


Fig. S1 XPS spectrum of ZnCr-x-100 and ZnCr-16-y catalysts: (a) ZnCr-8-100; (b) ZnCr-16-100; (c) ZnCr-24-100;

(d) ZnCr-48-100; (e) ZnCr-16-80; (f) ZnCr-16-160; (g) ZnCr-16-160

Fig. S2 The Cr 2p XPS spectrum of the reduced ZnCr-16-160 catalyst;

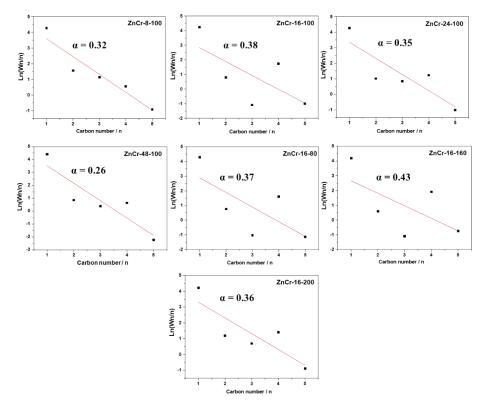


Fig. S3 Anderson–Schulz–Flory (ASF) plots for the distribution of alcohols for different catalysts at 10 h reaction. The ASF chain growth probability α of products is calculated according to the equation ln(Wn/n)=nln α + ln(1 - α)²/ α , in which n is the number of carbon atoms in products, Wn is the weight fraction of products containing n carbon atoms, and 1- α is the probability of chain termination.

Catalysts	CO Conversion (%)	Alcohol Selectivity (%)	Total alcohol production rate (g•ml ⁻¹ •h ⁻¹)	Alcohol distribution (wt%)				
				MeOH	EtOH	n-PrOH	i-BuOH	C ⁵⁺ OH
Comb-ZnCr ^a	17.4	50.9	0.075	78.4	4.2	2.9	13.6	0.8
Impr-ZnCr ^b	19.7	38.6	0.063	73.4	2.7	3.2	18.0	1.7
Copr-ZnCr °	21.9	43.8	0.094	72.6	1.6	2.1	19.4	1.0
Solgel-ZnCr ^d	16.8	67.3	0.092	68.7	3.1	3.9	20.9	1.6
Hydro-ZnCr ^e	19.2	60.2	0.111	65.2	3.6	1.0	27.0	2.3

Table S1 the catalytic performance of ZnCr catalysts by different methods

^a combustion method ^b impregnation method ^c co-precipitation method ^d sol-gel method ^e hydrothermal method