High Performance Heterojunction Photocatalytic Membranes Formed by Embedment of Cu₂O and TiO₂ Nanowires in Reduced Graphene Oxide

Wentai Wang^{a,b‡}, Zhiqing Wu^{b‡}, Ehsan Eftekhari^b, Ziyang Huo^b, Xiaoming Li^{b,c}, Moses O. Tade^d, Cheng Yan^e, Zifeng Yan^{f*}, Chunhu Li^{a*}, Qin Li^{b*} and Dongyuan Zhao^c

^a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China;

^b Queensland Micro- and Nanotechnology Centre, School of Engineering, Griffith University Nathan Campus, Brisbane, Australia;

^c Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China;

^d Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia;

^e School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, QLD 4000, Australia;

^f State Key Laboratory of Heavy Oil Processing Key Laboratory of CNPC, China University of Petroleum, Qingdao, China.

[‡] The authors have made equal contributions.

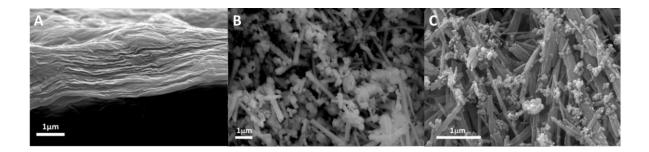


Fig. S1 FESEM images of (a) rGO membrane. (b) Cu₂O nanowires. (c) TiO₂ nanowires.

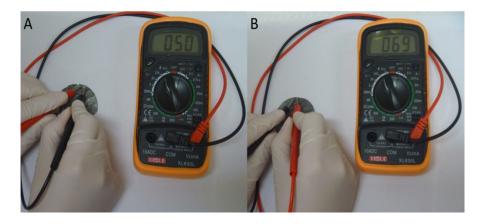


Fig. S2 The resistance of the rGO membrane (a) and $rGO/Cu_2O/TiO_2$ membrane (b).

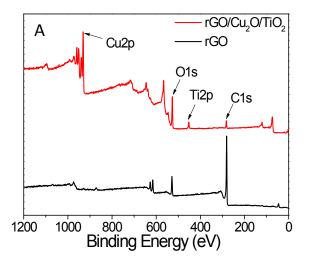


Fig S3. XPS survey spectrum of the $rGO/Cu_2O/TiO_2$ composite membranes.

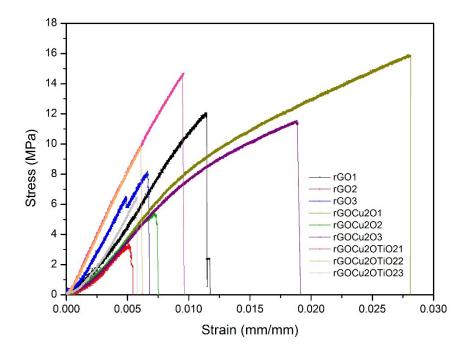
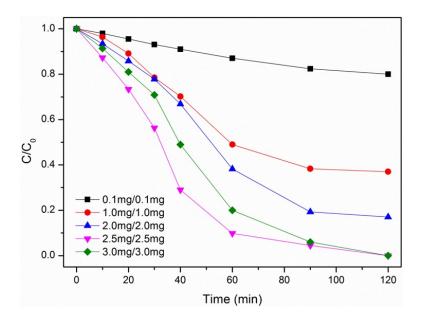
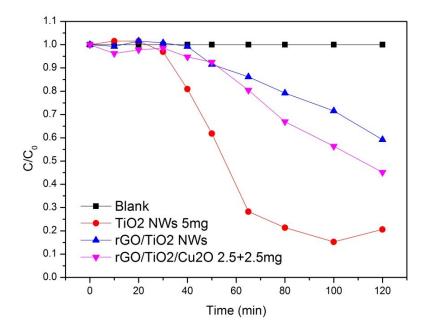




Fig S4. Tensile stress-strain tests.

Sample	Young's Modulus (E)
rGO 1	1117.67104
rGO 2	919.95378
rGO 3	1360.14432
rGO/Cu2O 1	364.85664
rGO/Cu2O 2	850.97092
rGO/Cu2O 3	394.24711
rGO/Cu2O/TiO2 1	1360.96589
rGO/Cu2O/TiO2 2	1522.31699
rGO/Cu2O/TiO2 3	1508.80656

Fig. S5 The photocatalytic degradation of Methyl Orange by rGO/Cu₂O/TiO₂ composite membrane with different Cu₂O NWs/TiO₂ NWs loadings under UV-Vis light irradiation;

Fig. S6 The photocatalytic degradation of Benzoic Acid by rGO/Cu₂O/TiO₂ membrane under UV-Vis light irradiation;

Experimental details for the photocatalytic pathway study

The selection of Rhodamine B (RhB) as the model molecule in this study is due to its distinguishable UV-vis absorption peak relative to iisopropanol and methanol. 40ml 10 ppm RhB solution was prepared and one piece of rGO/TiO₂/Cu₂O membrane was added into the solution, stirring at 300rpm in absence of light. Once the system has reached the adsorption-desorption equilibrate after 1 hour, the system started to expose to UV-Vis illumination. 0.1M isopropanol was added in order to quench •OH, 1 mL of RhB was sampled at certain time intervals and absorbance was measured by UV-Vis spectrometer to monitor the quenching effect. Same procedure was repeated however instead of using isopropanol, 0.1M methanol was employed to scavenge both h⁺ and •OH.