Supporting Information

Palladium Islands on Iron Oxide Nanoparticles for Hydrodesulfurization Catalysis

Ali Mansouri, Natalia Semagina*

Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada. * semagina@ualberta.ca

Nomenclature:

Parameter	Description	Unit
ρ_b	catalyst bed density	kg/m ³
ρ_c	catalyst compact bulk density	kg/m ³
ρ_g	gas density	kg/m ³
ф	catalyst bed porosity	
μ	feed viscosity	kg/m.s
ε _p	catalyst particle porosity	
τ	catalyst tortuosity	
b	bed dilution	
Bi _w	Biot number at the reactor wall	
C _i	initial concentration of 4,6-DMDBT in feed stream	mol/L
$C_{Ab} \approx C_{As}$	bulk (and surface) 4,6-DMDBT gas phase concentration	mol/m ³
dt	reactor internal diameter	m
d _p	catalyst particle diameter	m
d _{pore}	catalyst pore diameter	nm
D _{AB}	4,6-DMDBT diffusivity in H ₂	m²/s
D _k	Knudsen diffusivity	m²/s
D _{pore}	diffusivity in a pore	m²/s
D _e	effective diffusivity	m²/s
E _a	activation energy	kJ/mol
Fi	inlet molar flow rate of 4,6-DMDBT	mol/s
H _{rxn}	heat of reaction	kJ/mol
h	heat transfer coefficient	kW/m².K
ki	observed reaction rate constant	L/kg.s

k _c	mass transfer coefficient	m/s
k _{H2}	thermal conductivity of hydrogen	W/m.K
L _{bed}	catalyst bed length	m
m _{cat.}	mass of catalyst in the reactor	kg
М	molecular weight of 4,6-DMDBT	g/mol
n	reaction order	
Nu	Nusselt number	
р	number of catalyst layers	
Р	operating pressure	atm or Pa
-r _{A(obs)}	observed reaction rate	mol/kg.s
-r _{v(obs)}	observed reaction rate per unit of particle volume	mol/m ³ .s
R	catalyst particle radius	m
R _g	universal gas constant	J/mol.K
Re	Reynolds number	
R _t	Reactor internal radius	m
S	BET surface area	m²/g
Sh	Sherwood number	
Т	reaction temperature	К
T _w	Reactor wall temperature	К
U	fluid superficial velocity	m/s
Vi	molar diffusion volume	cm ³ /mol
X _i	4,6-DMDBT HDS conversion	

Phenomenon	criterion	calculated value for the criterion
external heat transfer limitations [S1]	$\Delta T_{film} = \frac{-r_{A(obs)} \times \rho_b \times R \times E_a \times (-\Delta H_{rxn})}{R_g \times h \times T^2} < 0.15$	2.6 × 10 ⁻⁶ < 0.15
external mass transfer limitations (Mears criterion) [S1]	$\frac{-r_{A(obs)} \times R \times n \times \rho_{b}}{k_{c} \times C_{Ab}} < 0.15$	7.8 × 10 ⁻⁴ < 0.15
internal mass transfer limitations (Weisz-Prater criterion for the 1 st order reaction) [S1]	$\frac{-r_{A(obs)} \times R^2 \times \rho_c}{D_e \times C_{As}} < 0.3$	0.03 < 0.3
plug-flow behavior (no axial dispersion and wall effects) [S2, S3]	$\frac{\frac{d_t}{d_p} > 10}{\frac{L_{bed}}{d_p} > 50}$	127 > 10 162> 50
Radial temperature gradient	$\frac{-r_{v(obs)} \times (1-\varepsilon) \times (1-b) \times E_a \times (-\Delta H_{rxn}) \times R_t^2}{R_g \times T_w^2 \times k_{H2}} \times$	$6.2 \times 10^{-4} < 0.05$
effect of bed dilution [S6]	0.6b/2p < experimental error 0.1	0.042

Table S1. Calculations on the absence of internal and external mass and heat transfer limitations and near-ideal plug flow behavior; the required parameters and calculation procedure are listed in Table S2.

Parameter	Definition and Unit	Equation and Value
k _{i(obs)}	Observed rate constant @ 623 K and 4,6- DMDBT conversion of 35.9 % (X _{4,6-DMDBT}) [L/kg.s]	$k_i = \frac{Ln\left(\frac{1}{1-X_i}\right) \times F_i}{C_i \times m_{cat.}} = 2.06 \times 10^{-3}$
-r _{A(obs)}	Observed reaction rate @ 623 K and X _{4,6-} _{DMDBT} = 35.9 % [mol/kg.s]	$-r_{A(obs)} = k_i \times C_i = 3.5 \times 10^{-5}$
m _{cat.}	mass of catalyst in the reactor [g]	0.18
F_i	4,6-DMDBT molar flow rate [mol/s]	1.41×10^{-8}
C _i	Initial concentration of 4,6-DMDBT [mol/L]	0.017
ρ _c	Catalyst compact bulk density [kg/m³]	4000
ф	Catalyst bed porosity	0.4
$ ho_b$	Catalyst bed density [kg/m³]	$\rho_b = (1 - \phi) \times \rho_c = 2400$
R	Catalyst particle radius [m]	0.00005
Ea	Activation energy for the 1 st order gas phase reaction [kJ/mol]	200 [S1]
ΔH_{rxn}	Heat of reaction calculated from the enthalpies of formation of each compounds in Scheme 1 provided in ref. [S4], [kJ/mol]	-148.5
Rg	Universal gas constant [J/mol.K]	8.314
Т	Reaction temperature [K]	623
d_p	Catalyst particle diameter [m]	0.0001
$ ho_g$	hydrogen gas density at 623 K and 3 MPa, [kg/m³]	1.17
μ	hydrogen viscosity at 623 K [kg/m.s]	1.42 × 10 ⁻⁵
Re	Reynolds number at 623 K for the fluid velocity of 0.022 m/s (in the reactor i.d. 0.5") assuming the bed porosity of 0.4	$Re = \frac{U \times \rho_g \times d_p}{(1 - \phi) \times \mu} = 0.18$
Sh, Nu	Sherwood and Nusselt numbers	2.0

Table S2. Calculation of parameters in Table S1 for $FeO_x@Pd_{0.2}/Al_2O_3$ catalyst.

k _{H2}	Thermal conductivity of hydrogen at 623 K, [W/m.K]	0.25
h	Heat transfer coefficient [kW/m².K]	$h = \frac{Nu \times k_{H2}}{d_p} = 1.5$
n	Reaction order, HDS of 4,6-DMDBT on Pd- based catalyst is known to follow a pseudo- first-order kinetics [S5]	1.0
$C_{Ab} \approx C_{As}$	Bulk 4,6-DMDBT gas phase concentration considering hydrogen gas [mol/m ³]	0.107
М	4,6-DMDBT molecular weight [g/mol]	212.3
D _{AB}	Estimated gas phase 4,6-DMDBT diffusivity in H_2 at 623 K and 3 MPa [m ² /s]; the molar volumes of H_2 and 4,6-DMDBT are 7.07 and 271.76 cm ³ /mol, respectively.	$D_{AB} = \frac{10^{-3} T^{1.75} \left[\frac{1}{M_A} + \frac{1}{M_B}\right]^{0.5}}{P\left[\left(\sum \nu_i\right)_A^{1/3} + \left(\sum \nu_i\right)_B^{1/3}\right]^2} = 2.61 \times 10^{-6}$
k _c	Mass transfer coefficient [m/s]	$k_c = \frac{D_{AB} \times Sh}{d_p} = 0.05$
d _{pore}	Catalyst pore diameter [nm]	5.8
D _k	Knudsen diffusivity [m²/s]	$D_K = 48.5 \times d_{pore} \times \sqrt{\frac{T}{M}} = 4.8 \times 10^{-7}$
D _{pore}	Diffusivity in a pore [m²/s]	$D_{pore} = \left(\frac{1}{D_{AB}} + \frac{1}{D_K}\right)^{-1} = 4.1 \times 10^{-7}$
S	BET surface area [m²/g]	155
ε _p	Catalyst particle porosity	$\varepsilon_p = \frac{S \times \rho_c \times d_{Pore}}{4} = 0.9$
τ	Catalyst tortuosity	3.9
D _e	Effective diffusivity [m ² /s]	$D_e = \frac{\varepsilon_P \times D_{pore}}{\tau} = 9.5 \times 10^{-8}$
dt	Reactor internal diameter [m]	0.0127
L _{bed}	Catalyst bed length [m]	0.0162
b	Bed dilution [-]: 3.96 g SiC (density 3.21 g/cm ³), 0.18 g Al ₂ O ₃ (density 3.95 g/cm ³)	0.964

1	Length of undiluted bed [m], 0.18 g Al_2O_3 (density 3.95 g/cm ³), 0.4 bed porosity, 0.0127 m diameter	0.0006
р	Number of catalyst layers [S6]	p=1.1547 (l/d _p) = 6.93
Bi _w	Biot number at the reactor wall	$Bi_w = \frac{h \times d_p}{k_{H2}} = 0.6$
-r _{v(obs)}	Observed reaction rate @ 623 K and X _{4,6-} _{DMDBT} = 35.9 % [mol/m ³ .s]	$-r_{v(obs)} = -r_{A(obs)} \times \rho_c = 0.14$

Figure S1. Typical GC chromatograms of fresh feed and HDS products at 623 K and 3 MPa over FeO_x@Pd_{0.2}/Al₂O₃ catalyst collected after 18 h on stream. The hydrocracking product identification was performed by GC-MS:

Figure S2. TEM (a) and HRTEM (b) images of spent Pd/Al₂O₃ catalyst.

Figure S3. (a) XRD patterns of unsupported FeO_x, Pd, and FeO_x@Pd nanoparticles after synthesis, and (b) after 4 h of calcination at 673 K; M and H represent magnetite (Fe₃O₄) and hematite (Fe₂O₃), respectively. The peaks were assigned based on the powder diffraction file numbers 00-019-0629 for magnetite, 97-002-2505 for hematite, 00-006-0696 for metallic iron, 97-018-0870 for metallic palladium, and 00-006-0515 for PdO. Figure S3(a) was used to calculate the lattice parameters in Table 1. The high intensities at 20-30° range in Figure S3(a) are due to carbon in PVP (stabilizer), which disappeared after calcination in Figure S3(b).

Figure S4. XPS profiles of Pd/Al₂O₃, FeO_x/Al₂O₃ and FeO_x@Pd_n/Al₂O₃ catalysts: Pd 3d of calcined (a) and spent (b) catalysts; Fe 2p of calcined (c) and spent catalysts (d).

Figure S5. XPS profile of the sulfided FeO_x@Pd_n sample showing the presence of sulfides.

References:

[S1] H.S. Fogler, Elements of chemical reaction engineering, 4th Ed., Prentice Hall, 2005.R.E.

- [S2] J. Perez-Ramirez, R.J. Berger, G. Mul, F. Kapteijn, J.A. Moulijn, Catal. Today 60 (2000) 93.
- [S3] J.F. Le Page, Applied heterogeneous catalysis, TechniP, 1987.
- [S4] Q. Yu, L. Zhang, R. Guo, J. Sun, W. Fu, T. Tang, T. Tang, Fuel Process. Technol. 159 (2017) 76-87.
- [S5] A. Niquille-Röthlisberger, R. Prins, J. Catal. 242 (2006) 207–216.
- [S6] C. M. Van Den Bleek, K. Van Der Wiele and P. J. Van Den Berg, Chem. Eng. Sci. 24 (1969) 681-694