Supporting Information

Potassium-incorporated mesoporous carbons: strong solid bases with enhanced catalytic activity and stability

Tian-Tian Li,^a Xia-Jun Gao,^a Shi-Chao Qi,^a Li Huang,^a Song-Song Peng,^a Wei Liu,^a Xiao-Qin Liu^{*a} and Lin-Bing Sun^{*a}

^a Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

E-mail: liuxq@njtech.edu.cn; lbsun@njtech.edu.cn

Catalyst	Reaction conditions	DMC yield (%)	TOF (h ⁻¹)	Ref.
KC-2	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	33.1	430.3	This work
MgO	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	7.6	0.95	1
CsX	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	6.1	2.9	1
CaO/SBA-15	0.50 mol methanol, 0.10 mol EC, 0.5 wt% catalyst, 65 °C, 4 h	13.4	6.4	1
K ₂ O/ZrO ₂ / SBA-15	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	28.4	34.9	2
Y/Mg-Al	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	29.5	3.3	3
Ce-Zn/YiO ₂	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	23.0	12.8	4
CeO-meso-400	0.50 mol methanol, 0.10 mol EC, 0.50 wt% catalyst, 65 °C, 4 h	33.6	16.5	5
CN	0.50 mol methanol, 0.10 mol EC, 0.10 g catalyst, 160 °C, 6 h	27.4		6
Mg(Al)O _x	0.50 mol methanol, 0.13 mol EC, 0.50 wt% catalyst, 70 °C, 6 h	15.0		7
Y ₂ O ₃	0.24 mol methanol, 0.030 mol EC, 0.07 g catalyst, 65 °C, 1 h	10.0		8
ZnO	0.24 mol methanol, 0.030 mol EC, 0.07 g catalyst, 65 °C, 1 h	17.0		8
C_3N_4	0.25 mol methanol, 0.025 mol EC, 0.10 g catalyst, 160 °C, 4 h	26.0	1.69	9
S-Ni-Na	0.20 mol methanol, 0.025 mol EC, 0.45 g catalyst, 150 °C, 4 h	20.8		10
NO ₃ /Ni ₂ Al	0.50 mol methanol, 0.13 mol EC, 0.090 g catalyst, 65 °C, 3 h	18.0		11
K-TS-1	0.12 mol methanol, 0.030 mol EC, 0.090 g catalyst, 65 °C, 3 h	28.0		12

Table S1The yield of DMC under the catalysis of different samples

Fig. S1 Low-angle XRD pattern of SBA-15.

Fig. S2 (A) N_2 adsorption-desorption isotherm and (B) pore size distribution of SBA-15.

Fig. S3 Raman spectra of CMK-3, KC-1, KC-2, KC-3, KC-2-A, and KC-2-R samples.

Fig. S4 XPS spectra of KC-1, KC-2, KC-3, and KC-2-R samples.

Fig. S5 TEM images of (A) CMK-3 and (B) KC-2 samples.

Fig. S6 IR spectra of CMK-3, KC-1, KC-2, KC-3, KC-2-A, and KC-2-R samples.

Fig. S7 Soluble basic sites of K-AL, KC-2-R, and KC-2 samples.

Fig. S8 The yield of DMC under the catalysis of KC-1、KC-2 and KC-3 samples.

References

- T. T. Li, L. B. Sun, X. Y. Liu, Y. H. Sun, X. L. Song and X. Q. Liu, *Chem. Commun.*, 2012, 48, 6423-6425.
- 2 X. Y. Liu, L. B. Sun, F. Lu, T. T. Li and X. Q. Liu, J. Mater. Chem. A, 2013, 1, 1623-1631.
- 3 P. Unnikrishnan and D. Srinivas, *Ind. Eng. Chem. Res.*, 2012, **51**, 6356-6363.
- 4 P. Kumar, V. C. Srivastava and I. M. Mishra, Korean J. Chem. Eng., 2015, 32, 1774-1783.
- J. Xu, K. Z. Long, F. Wu, B. Xue, Y.X. Li and Y. Cao, *Appl. Catal. A: Gen.*, 2014, 484, 17.
- J. Xu, K. Z. Long, F. Wu, B. Xue, Y. X. Li and Y. Cao, *Catal. Sci. Technol.*, 2013, 3, 3192-3199.
- 7 G. Stoica, S. Abello and J. Perez-Ramirez, *ChemSusChem.*, 2009, 2, 301-304.
- 8 L. G. Wang, Y. Wang, S. Liu, L. J. Lu, X. Y. Ma and Y.Q. Deng, *Catal. Commun.*, 2011, 16, 45-49.
- 9 J. Xu, K. Z. Long, F. Wu, B. Xue and Y. X. Li, Appl. Catal. A: Gen., 2015, 496, 1-8.
- 10 B. M. Bhanage, S. Fujita, Y. F. He, Y. Ikushim, M. Shirai, K. Torii and M. Arai, *Catal. Lett.*, 2002, 83, 137-141.
- 11 Y. Watanabe and T. Tatsumi, *Microporous Mesoporous Mater.*, 1998, 22, 399-407.
- 12 T. Tatsumi, Y. Watanabe and K. A. Koyano, Chem. Commun., 1996, 2281-2282.