Supplementary material

Fluorine-enhanced Pt/ZSM-5 catalysts for low-temperature oxidation of ethylene

Hongling Yang,^{a,b} Chunyan Ma,^{a,b} Gang Wang,^{a,b} Yonggang Sun,^{a,b} Jie Cheng,^{a,b} Zhongshen Zhang,^{*,a,b} Xin Zhang,^{a,b} Zhengping Hao^{*,a,b}

^a National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China

^b Department of Environmental Nano-materials and Technologies, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

*E-mail: zpinghao@rcees.ac.cn; zhangzs@rcees.ac.cn

1.1. Catalyst characterization

 O_2 -TPD was conducted in a Micromeritics Chemisorb 2720 apparatus. Before TPD run, 100 mg of catalyst was pretreated in helium (He) at a flow rate of 50 mL·min⁻¹ at 300°C for 1 h in a quartz U-tube reactor and then cooled to room temperature. The adsorption process was performed by exposing the catalyst to a 50mL·min⁻¹ flow of 5% O_2 /He for 30 min. Then, He was fed into the reactor at 50 mL·min⁻¹ for 30 min to purge residual O_2 . The O_2 -TPD was performed by heating the catalyst from 25 °C to 600 °C at a constant heating rate of 10 °C·min⁻¹ under He flow of 50 mL·min⁻¹. The desorbed O_2 was monitored with a thermal conductivity detector.

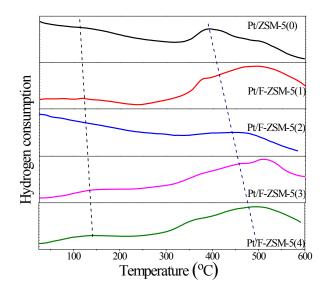


Fig. S1 H₂-TPR profiles of Pt/ZSM-5(0) and Pt/F-ZSM-5 catalysts.

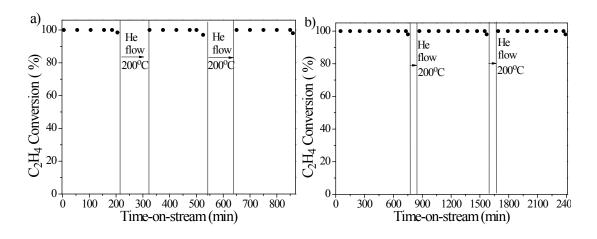


Fig.S2 Catalytic performances of (a) Pt/ZSM-5(0) and (b) Pt/F-ZSM-5(2) catalysts at 25°C; Space velocity: 7500 mL·h⁻¹·g⁻¹; catalyst: 0.20 g; C_2H_4 : 100 ppm; O_2 : 21 vol %; He balance.

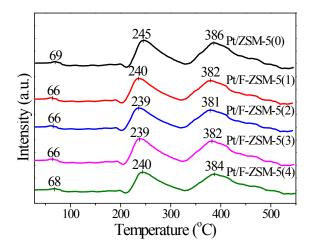


Fig. S3 O_2 -TPD profiles of Pt/ZSM-5(0) and Pt/F-ZSM-5 catalysts.