Electronic Supplementary Information (ESI)

TiO₂ Modified with A Ru(II)–N'NN' 8-Hydroxyquinolyl Complex for Efficient Gaseous Photoreduction of CO₂

Wenjing Xiang,^a Lin Li,^a Zengjing, Dai,^a Xianggao Meng,^b Renjie Li,^a Jing Zhang^{a,*} and Tianyou Peng^{a,*}

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China ^b Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; School of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

jzhang03@whu.edu.cn (J. Zhang); typeng@whu.edu.cn (T. Peng)

Table of Contents

Fig. S1 FTIR spectra of the Ru(II) princer complex [Ru N'NN')(ONO)]	2
Fig. S2 MALDI-TOF mass spectrum of the Ru(II) princer complex [Ru(N'NN')(ONO)]	2
Fig. S3 Cyclic voltammogram of the Ru(II) princer complex [Ru(N'NN')(ONO)]	2
Fig. S4 Time courses of CO/CH ₄ production over 0.25wt% Ru(N'NN')(ONO)-TiO ₂ during 3 h full spectrum	
irradiation of Xe-lamp	3
Table S1 Effect of Ru(N'NN')(ONO)-loading amount on the CO/CH4 production activity over var	ious
Table S1 Effect of Ru(N'NN')(ONO)-loading amount on the CO/CH ₄ production activity over var photocatalysts	ious 3

Fig. S1 FTIR spectra of the Ru(II) pincer complex [Ru(N'NN')(ONO)].

Fig. S2 MALDI-TOF mass spectrum of the Ru(II) pincer complex [Ru(N'NN')(ONO)].

Fig. S3 Cyclic voltammogram of the Ru(II) pincer complex [Ru(N'NN')(ONO)].

Fig. S4 Time courses of CO/CH₄ production over 0.25wt% Ru(N'NN')(ONO)-TiO₂ during 3 h full spectrum irradiation of Xe-lamp.

Table S1 Effect of Ru(N'NN')(ONO)-loading amount on the CO/CH₄ production activity over various photocatalysts

Catalyst	CO produced rate / µmol g ⁻¹ h ⁻¹	CH ₄ produced rate / µmol g ⁻¹ h ⁻¹	TCEN / μmol g ⁻¹ h ⁻¹
TiO ₂	1.82	0.82	10.20
0.05wt% Ru(N'NN')(ONO)-TiO ₂	16.25	8.17	97.86
0.13wt% Ru(N'NN')(ONO)-TiO ₂	18.37	12.52	136.90
0.25wt% Ru(N'NN')(ONO)-TiO ₂	26.6	17.2	190.80
0.50wt% Ru(N'NN')(ONO)-TiO ₂	18.82	12.14	134.76
1.00wt% Ru(N'NN')(ONO)-TiO ₂	10.14	7.65	81.48
2.00wt% Ru(N'NN')(ONO)-TiO ₂	9.79	5.89	66.70

CIF file of [Ru(N'NN')(ONO)] CCDC 1536357

1. 1

data_1	
_audit_creation_method SHELXL-97	
_chemical_name_systematic; ? ; _chemical_name_common ? _chemical_melting_point	?
_chemical_formula_moiety 'C43 H29 N6 O4 Ru'_chemical_formula_sum 'C43 H29 N6 O4 Ru'	
_chemical_formula_weight 794.79	
loopatom_type_symbol _atom_type_description _atom_type_scat_dispersion_real	
_atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016	
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000	
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'	
'N' 'N' 0.0061 0.0033	
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060	
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ru' 'Ru' -1.2594 0.8363	
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'	
_symmetry_cell_setting Monoclinic	
_symmetry_space_group_name_H-M 'P 21/c'	
_symmetry_space_group_name_Hall '-P 2ybc'	
loop symmetry equiv pos as xyz	

'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2'

_cell_length_a12.139(9) _cell_length_b15.530(11) _cell_length_c24.301(17)_cell_angle_alpha90.00 _cell_angle_beta98.770(11) _cell_angle_gamma90.00_cell_volume4528(6) _cell_formula_units_Z4 _cell_measurement_temperature100(2)_cell_measurement_reflns_used1398 _cell_measurement_theta_min2.15 _cell_measurement_theta_max18.73

exptl crystal description needle exptl crystal colour red exptl crystal size max 0.10 0.06 exptl crystal size min ? exptl crystal size mid 0.05 exptl crystal density meas exptl crystal density diffrn 1.166 exptl crystal density method 'not measured' exptl crystal F 000 1620 exptl absorpt coefficient mu 0.389 exptl absorpt correction type multi-scan exptl absorpt correction T min 0.9622 exptl absorpt correction T max 0.9708 exptl absorpt process details 'SADABS, Sheldrick, 2008' exptl special details; ?; 0.71073 diffrn radiation type diffrn ambient temperature 100(2) diffrn radiation wavelength 'fine-focus sealed tube' diffrn radiation monochromator graphite MoK\a diffrn radiation source diffrn measurement device type 'Bruker APEX-II CCD' diffrn measurement method '\f and \w scans' diffrn detector area resol mean ? diffrn standards number 0 diffrn standards interval count ? _diffrn_standards_interval_time ?_diffrn_standards_decay_% ? diffrn reflns number 5911 diffrn reflns av R equivalents 0.0000 diffrn reflns av sigmal/netI 0.1208 diffrn reflns limit h min -13 diffrn reflns limit h max 12 diffrn reflns limit k min 0 diffrn reflns limit k max 16 0 diffrn reflns limit 1 max 26 diffrn reflns theta min 1.70 diffrn reflns limit 1 min diffrn reflns theta max 22.58 reflns number total 5911 reflns number gt 3127 reflns threshold expression >2sigma(I) computing data collection 'Bruker APEX2' computing cell refinement 'Bruker SAINT' 'Bruker SAINT' computing structure solution computing data reduction 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement_'SHELXL-97 (Sheldrick, 1997)'_computing_molecular_graphics 'Bruker SHELXTL' computing publication material 'Bruker SHELXTL'

_refine_special_details;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details

'calc w=1/[$s^2(Fo^2)+(0.1462P)^2+0.0000P$] where P=(Fo^2+2Fc^2)/3'

_atom_sites_solution_primary direct_atom_sites_solution_secondary difmap_atom_sites_solution_hydrogens geom_refine_ls_hydrogen_treatment constr_refine_ls_extinction_method none_refine_ls_extinction_coef

?

_refine_ls_number_reflns5911 _refine_ls_number_parameters533 _refine_ls_number_restraints287_refine_ls_R_factor_all0.1226 _refine_ls_R_factor_gt0.0744 _refine_ls_wR_factor_ref0.2145_refine_ls_wR_factor_gt0.1868 _refine_ls_goodness_of_fit_ref0.832 _refine_ls_restrained_S_all0.843_refine_ls_shift/su_max0.000 _refine_ls_shift/su_mean0.000

loop__atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_label _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ru1 Ru 0.37971(5) 0.86809(5) 0.28364(3) 0.0417(3) Uani 1 1 d . . . C1 C 0.5792(7) 0.9542(7) 0.3419(3) 0.046(2) Uani 1 1 d . . . C2 C 0.6833(7) 0.9619(7) 0.3738(4) 0.059(3) Uani 1 1 d . . . C1 C 0.5792(7) 0.9542(7) 0.3419(3) 0.046(2) Uani 1 1 d . . . C2 C 0.7360(8) 0.8877(8) 0.3936(4) 0.072(3) Uani 1 1 d . . . H2 H 0.7171 1.0166 0.3816 0.070 Uiso 1 1 calc R . . C3 C 0.7360(8) 0.8877(8) 0.3936(4) 0.072(3) Uani 1 1 d . . . H3 H 0.8076 0.8920 0.4155 0.087 Uiso 1 1 calc R . . C5 C 0.5860(7) 0.8038(6) 0.3503(4) 0.067(3) Uani 1 1 d . . . C6 C 0.5045(7) 1.0211(6) 0.3170(3) 0.043(2) Uani 1 1 d . . . C5 C 0.3497(7) 1.0727(6) 0.2688(4) 0.048(2) Uani 1 1 d . . . C8 C 0.2461(8) 1.0870(7) 0.2365(4) 0.057(3) Uani 1 1 d C9 C 0.2103(8) 1.1698(7) 0.2282(4) 0.061(3) Uani 1 1 d

H9 H 0.1408 1.1808 0.2056 0.073 Uiso 1 1 calc R A . C10 C 0.2737(9) 1.2385(7) 0.2524(4) 0.065(3) Uani 1 1 d . A . H10 H 0.2442 1.2950 0.2468 0.078 Uiso 1 1 calc R . . C11 C 0.3762(9) 1.2286(6) 0.2837(4) 0.057(2) Uani 1 1 d . . . H11 H 0.4194 1.2763 0.2991 0.068 Uiso 1 1 calc R A . C12 C 0.4133(7) 1.1436(7) 0.2915(3) 0.050(2) Uani 1 1 d . A . C13 C 0.5952(7) 1.1599(6) 0.3590(3) 0.050(2) Uani 1 1 d . A . H13A H 0.5861 1.2216 0.3491 0.060 Uiso 1 1 calc R . . H13B H 0.6714 1.1421 0.3540 0.060 Uiso 1 1 calc R . . C14 C 0.5794(5) 1.1468(5) 0.41940(19) 0.059(3) Uani 1 1 d G . . C15 C 0.4785(4) 1.1207(6) 0.4343(2) 0.097(4) Uani 1 1 d G . . H15 H 0.4163 1.1100 0.4063 0.116 Uiso 1 1 calc R . . C16 C 0.4684(5) 1.1103(6) 0.4901(3) 0.141(7) Uani 1 1 d G . . H16 H 0.3994 1.0925 0.5003 0.169 Uiso 1 1 calc R . . C17 C 0.5594(7) 1.1259(6) 0.53106(19) 0.117(5) Uani 1 1 d G . . H17 H 0.5525 1.1188 0.5692 0.140 Uiso 1 1 calc R . . C18 C 0.6603(6) 1.1520(6) 0.5162(2) 0.125(6) Uani 1 1 d G . . H18 H 0.7225 1.1626 0.5441 0.150 Uiso 1 1 calc R . . C19 C 0.6704(5) 1.1624(6) 0.4603(3) 0.116(5) Uani 1 1 d G . . H19 H 0.7394 1.1802 0.4502 0.140 Uiso 1 1 calc R . . C20 C 0.5162(7) 0.7273(6) 0.3333(3) 0.045(2) Uani 1 1 d . A . C21 C 0.3699(7) 0.6616(7) 0.2907(3) 0.052(3) Uani 1 1 d... C22 C 0.2675(7) 0.6376(7) 0.2595(4) 0.056(2) Uani 1 1 d. A. H22 H 0.2193 0.6786 0.2392 0.067 Uiso 1 1 calc R . . C23 C 0.2407(9) 0.5526(7) 0.2598(5) 0.070(3) Uani 1 1 d . . . H23 H 0.1712 0.5344 0.2398 0.084 Uiso 1 1 calc R A . C24 C 0.3118(9) 0.4906(7) 0.2885(4) 0.071(3) Uani 1 1 d . A . H24 H 0.2892 0.4320 0.2867 0.085 Uiso 1 1 calc R . . C25 C 0.4140(9) 0.5119(7) 0.3195(4) 0.063(3) Uani 1 1 d . . . H25 H 0.4618 0.4699 0.3389 0.075 Uiso 1 1 calc R A . C26 C 0.4416(8) 0.5983(7) 0.3202(4) 0.052(2) Uani 1 1 d . A . C27 C 0.6241(8) 0.6028(7) 0.3855(4) 0.064(3) Uani 1 1 d . A . H27A H 0.6967 0.6254 0.3782 0.077 Uiso 1 1 calc R . . H27B H 0.6232 0.5400 0.3783 0.077 Uiso 1 1 calc R . . C28 C 0.6150(8) 0.6174(6) 0.4457(4) 0.058(3) Uani 1 1 d . . . C29 C 0.5164(11) 0.6200(10) 0.4652(5) 0.119(5) Uani 1 1 d . . . H29 H 0.4508 0.6168 0.4385 0.143 Uiso 1 1 calc R ... C30 C 0.5027(13) 0.6267(11) 0.5187(5) 0.130(6) Uani 1 1 d . . . H30 H 0.4309 0.6237 0.5295 0.156 Uiso 1 1 calc R ... C31 C 0.6014(15) 0.6385(8) 0.5589(5) 0.101(5) Uani 1 1 d . . .

H31 H 0.5977 0.6490 0.5971 0.121 Uiso 1 1 calc R . .

C32 C 0.7014(14) 0.6336(10) 0.5389(5) 0.117(5) Uani 1 1 d . . .

H32 H 0.7685 0.6358 0.5647 0.141 Uiso 1 1 calc R ... C33 C 0.7081(9) 0.6260(8) 0.4850(4) 0.096(4) Uani 1 1 d ... H33 H 0.7794 0.6265 0.4735 0.115 Uiso 1 1 calc R ... C34 C 0.1987(8) 0.8593(15) 0.1899(4) 0.066(3) Uani 0.645(9) 1 d PDU A 1 C35 C 0.0830(8) 0.8626(14) 0.1689(5) 0.064(5) Uani 0.645(9) 1 d PDU A 1 H35 H 0.0594 0.8591 0.1299 0.077 Uiso 0.645(9) 1 calc PR A 1 C36 C 0.0015(7) 0.8711(14) 0.2051(4) 0.062(4) Uani 0.645(9) 1 d PDU A 1 C37 C 0.0363(6) 0.8760(8) 0.2637(3) 0.056(4) Uani 0.645(9) 1 d PGDU A 1 C38 C -0.0364(5) 0.8860(8) 0.3022(4) 0.066(5) Uani 0.645(9) 1 d PGDU A 1 H38 H -0.1146 0.8851 0.2902 0.079 Uiso 0.645(9) 1 calc PR A 1 C39 C 0.0053(8) 0.8973(9) 0.3583(4) 0.133(7) Uani 0.645(9) 1 d PGDU A 1 H39 H -0.0444 0.9041 0.3846 0.160 Uiso 0.645(9) 1 calc PR A 1 C40 C 0.1198(8) 0.8986(10) 0.3758(3) 0.103(5) Uani 0.645(9) 1 d PGDU A 1 H40 H 0.1483 0.9063 0.4141 0.124 Uiso 0.645(9) 1 calc PR A 1 C41 C 0.1925(6) 0.8886(9) 0.3373(3) 0.049(5) Uani 0.645(9) 1 d PGDU A 1 C42 C 0.1508(6) 0.8773(8) 0.2812(3) 0.045(3) Uani 0.645(9) 1 d PGDU A 1 C43 C 0.3025(8) 0.8577(15) 0.1668(4) 0.060(4) Uani 0.645(9) 1 d PDU A 1 N6 N 0.2305(7) 0.8730(10) 0.2463(4) 0.037(3) Uani 0.645(9) 1 d PDU A 1 O1 O 0.3956(8) 0.857(2) 0.2002(5) 0.052(3) Uani 0.645(9) 1 d PDU A 1 O2 O 0.2965(10) 0.8603(10) 0.1141(4) 0.081(3) Uani 0.645(9) 1 d PDU A 1 O3 O 0.3003(8) 0.8864(8) 0.3537(4) 0.050(4) Uani 0.645(9) 1 d PDU A 1 O4 O -0.1022(8) 0.8722(10) 0.1844(4) 0.102(4) Uani 0.645(9) 1 d PDU A 1 C34' C 0.1312(12) 0.856(2) 0.2703(5) 0.045(3) Uani 0.355(9) 1 d PDU A 2 C35' C 0.0253(13) 0.866(3) 0.2373(6) 0.081(11) Uani 0.355(9) 1 d PDU A 2 H35' H -0.0387 0.8707 0.2552 0.097 Uiso 0.355(9) 1 calc PR A 2 C36' C 0.0115(12) 0.870(3) 0.1784(6) 0.073(10) Uani 0.355(9) 1 d PDU A 2 C37' C 0.1099(12) 0.870(2) 0.1537(7) 0.079(11) Uani 0.355(9) 1 d PGDU A 2 C38' C 0.1049(15) 0.8729(17) 0.0962(6) 0.119(14) Uani 0.355(9) 1 d PGDU A 2 H38' H 0.0347 0.8719 0.0728 0.143 Uiso 0.355(9) 1 calc PR A 2 C39' C 0.2025(18) 0.8771(19) 0.0730(6) 0.133(7) Uani 0.355(9) 1 d PGDU A 2 H39' H 0.1991 0.8790 0.0337 0.160 Uiso 0.355(9) 1 calc PR A 2 C40' C 0.3052(15) 0.879(2) 0.1072(7) 0.081(3) Uani 0.355(9) 1 d PGDU A 2 H40' H 0.3720 0.8814 0.0914 0.097 Uiso 0.355(9) 1 calc PR A 2 C41' C 0.3103(12) 0.876(3) 0.1647(7) 0.060(4) Uani 0.355(9) 1 d PGDU A 2 C42' C 0.2126(12) 0.872(2) 0.1880(6) 0.066(3) Uani 0.355(9) 1 d PGDU A 2 C43' C 0.1757(12) 0.855(2) 0.3292(6) 0.055(9) Uani 0.355(9) 1 d PDU A 2 N6' N 0.2244(13) 0.8475(19) 0.2437(7) 0.037(3) Uani 0.355(9) 1 d PDU A 2 O1' O 0.2815(12) 0.8572(14) 0.3435(7) 0.034(6) Uani 0.355(9) 1 d PDU A 2 O2' O 0.1080(15) 0.8636(19) 0.3642(7) 0.103(5) Uani 0.355(9) 1 d PDU A 2 O3' O 0.4073(13) 0.869(4) 0.1968(9) 0.052(3) Uani 0.355(9) 1 d PDU A 2

O4' O -0.0850(12) 0.8692(18) 0.1491(7) 0.102(4) Uani 0.355(9) 1 d PDU A 2 N1 N 0.5312(5) 0.8753(5) 0.3297(3) 0.0440(17) Uani 1 1 d . A . N2 N 0.4065(5) 0.9976(5) 0.2853(3) 0.0444(18) Uani 1 1 d . A . N3 N 0.5112(5) 1.1076(5) 0.3218(3) 0.0457(19) Uani 1 1 d . . . N4 N 0.4186(5) 0.7407(5) 0.3010(3) 0.0469(19) Uani 1 1 d . . . N5 N 0.5359(6) 0.6429(5) 0.3469(3) 0.0507(19) Uani 1 1 d . . .

loop atom site aniso label atom site aniso U 11 atom site aniso U 22 atom site aniso U 33 atom site aniso U 23 atom site aniso U 13 atom site aniso U 12 Ru1 0.0211(4) 0.0623(5) 0.0425(4) 0.0001(4) 0.0075(3) -0.0010(4) C1 0.025(5) 0.078(7) 0.037(5) -0.001(5) 0.012(4) 0.006(5) C2 0.026(5) 0.098(8) 0.053(6) 0.001(5) 0.011(5) 0.004(5) $C3\ 0.036(6)\ 0.123(11)\ 0.050(6)\ -0.004(6)\ -0.022(5)\ -0.001(7)$ C4 0.034(6) 0.102(10) 0.060(6) 0.002(6) -0.004(5) 0.001(6) C5 0.034(5) 0.068(7) 0.053(5) 0.003(5) 0.017(5) 0.003(5) C6 0.033(5) 0.064(7) 0.035(5) -0.011(4) 0.016(4) -0.005(5) C7 0.039(6) 0.055(7) 0.057(6) -0.001(5) 0.026(5) 0.006(5) C8 0.049(6) 0.061(7) 0.063(6) 0.001(5) 0.014(5) 0.003(5) C9 0.040(6) 0.072(7) 0.072(7) 0.008(6) 0.015(5) 0.005(6) C10 0.057(7) 0.064(8) 0.075(7) 0.010(6) 0.008(6) 0.019(6) C11 0.069(7) 0.039(6) 0.066(6) -0.002(5) 0.019(5) -0.013(6) C12 0.041(6) 0.067(7) 0.048(5) -0.005(5) 0.021(4) -0.009(5) C13 0.037(5) 0.070(7) 0.043(5) -0.013(4) 0.000(4) -0.014(4) C14 0.044(6) 0.094(8) 0.042(5) -0.003(5) 0.017(4) 0.004(5) C15 0.050(7) 0.187(14) 0.055(6) 0.016(8) 0.013(5) 0.000(8) C16 0.052(7) 0.33(2) 0.050(7) 0.025(10) 0.022(6) 0.030(11) C17 0.135(13) 0.164(14) 0.057(7) 0.008(8) 0.036(9) 0.009(11) C18 0.108(11) 0.233(18) 0.034(6) 0.003(8) 0.016(7) -0.064(11) C19 0.052(7) 0.220(16) 0.077(8) -0.034(9) 0.013(6) -0.053(9) C20 0.035(5) 0.063(7) 0.040(5) -0.003(5) 0.014(4) 0.007(5) C21 0.031(5) 0.084(8) 0.044(5) -0.005(5) 0.017(4) -0.007(5) C22 0.038(5) 0.063(7) 0.069(6) -0.007(5) 0.019(5) -0.006(5) C23 0.057(7) 0.060(8) 0.099(8) -0.012(6) 0.031(6) -0.003(6) C24 0.060(7) 0.060(7) 0.095(8) -0.009(6) 0.021(6) 0.000(6) C25 0.070(8) 0.060(8) 0.064(6) -0.012(5) 0.027(6) 0.005(6) C26 0.047(6) 0.061(7) 0.055(5) 0.004(5) 0.029(5) 0.016(5) C27 0.040(6) 0.081(8) 0.071(6) 0.004(5) 0.011(5) 0.016(5) C28 0.043(6) 0.077(8) 0.051(5) 0.012(5) 0.000(5) 0.012(5) C29 0.081(9) 0.220(17) 0.057(7) -0.001(9) 0.010(7) 0.017(10) C30 0.099(11) 0.24(2) 0.050(7) 0.015(9) 0.015(7) 0.029(12)

C31 0.174(15) 0.083(9) 0.049(7) 0.010(6) 0.027(9) 0.016(10) C32 0.118(12) 0.184(16) 0.043(7) 0.016(8) -0.011(7) -0.039(12) C33 0.039(6) 0.180(14) 0.065(7) 0.020(8) -0.003(5) 0.022(8) C34 0.054(5) 0.062(6) 0.081(6) -0.004(5) 0.003(5) 0.001(5) C35 0.042(7) 0.078(9) 0.078(8) -0.012(7) 0.024(7) 0.000(7) C36 0.040(7) 0.072(8) 0.072(9) 0.002(9) 0.002(7) -0.005(7) C37 0.047(7) 0.058(8) 0.062(8) -0.005(7) 0.007(6) 0.014(7) C38 0.032(6) 0.079(9) 0.093(8) 0.015(7) 0.030(6) 0.004(6) C39 0.125(9) 0.143(10) 0.132(9) 0.003(7) 0.018(7) 0.003(7) C40 0.098(7) 0.112(9) 0.106(7) 0.005(6) 0.033(6) -0.003(6) C41 0.041(8) 0.049(9) 0.065(8) 0.003(6) 0.032(6) -0.001(6) C42 0.014(5) 0.042(7) 0.076(6) -0.001(5) 0.001(4) -0.007(5) C43 0.071(6) 0.055(8) 0.052(5) 0.005(5) 0.000(4) 0.003(5) N6 0.032(4) 0.034(8) 0.039(4) 0.000(4) -0.016(3) -0.003(4) O1 0.045(4) 0.054(8) 0.062(4) 0.001(3) 0.025(3) 0.000(4) O2 0.097(5) 0.088(6) 0.056(4) 0.004(4) 0.004(4) 0.015(5) O3 0.050(6) 0.056(8) 0.044(6) -0.013(5) 0.011(5) 0.000(5) O4 0.068(5) 0.113(6) 0.123(7) 0.003(6) 0.006(5) 0.013(5) C34' 0.014(5) 0.042(7) 0.076(6) -0.001(5) 0.001(4) -0.007(5) C35' 0.085(14) 0.082(14) 0.068(14) 0.003(10) -0.015(9) 0.006(10) C36' 0.055(12) 0.081(13) 0.076(13) -0.006(10) -0.012(9) -0.004(10) C37' 0.083(14) 0.074(14) 0.076(13) -0.001(10) 0.000(10) -0.001(10) C38' 0.125(16) 0.114(16) 0.114(16) 0.003(10) 0.004(10) 0.007(10) C39' 0.125(9) 0.143(10) 0.132(9) 0.003(7) 0.018(7) 0.003(7) C40' 0.097(5) 0.088(6) 0.056(4) 0.004(4) 0.004(4) 0.015(5) C41' 0.071(6) 0.055(8) 0.052(5) 0.005(5) 0.000(4) 0.003(5) C42' 0.054(5) 0.062(6) 0.081(6) -0.004(5) 0.003(5) 0.001(5) C43' 0.046(12) 0.051(13) 0.067(12) -0.008(9) 0.008(9) 0.004(9) N6' 0.032(4) 0.034(8) 0.039(4) 0.000(4) -0.016(3) -0.003(4) O1' 0.033(9) 0.036(10) 0.036(8) -0.014(7) 0.017(7) 0.002(7) O2' 0.098(7) 0.112(9) 0.106(7) 0.005(6) 0.033(6) -0.003(6) O3' 0.045(4) 0.054(8) 0.062(4) 0.001(3) 0.025(3) 0.000(4) O4' 0.068(5) 0.113(6) 0.123(7) 0.003(6) 0.006(5) 0.013(5) N1 0.030(4) 0.062(5) 0.040(4) -0.001(4) 0.005(3) -0.003(4) N2 0.025(4) 0.063(5) 0.045(4) -0.001(4) 0.002(3) 0.003(4) N3 0.032(4) 0.068(6) 0.039(4) -0.010(4) 0.013(3) -0.010(4) N4 0.024(4) 0.076(6) 0.039(4) 0.000(4) 0.001(3) 0.001(4) N5 0.036(4) 0.068(6) 0.048(4) 0.010(4) 0.007(4) 0.004(4) geom special details;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

; loop__geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag

Ru1 N6 1.900(9). ? Ru1 N1 2.004(6). ? Ru1 N6' 2.010(18). ? Ru1 O1' 2.025(17). ? Ru1 N2 2.037(8). ? Ru1 N4 2.063(8) . ? Ru1 O1 2.072(13) . ? Ru1 O3 2.099(11) . ? Ru1 O3' 2.19(2) . ? C1 N1 1.371(11) . ? C1 C2 1.383(11) . ? C1 C6 1.450(12) . ? C2 C3 1.370(14) . ? C2 H2 0.9500 . ? C3 C4 1.350(14) . ? C3 H3 0.9500 . ? C4 C5 1.403(12) . ? C4 H4 0.9500 . ? C5 N1 1.351(11) . ? C5 C20 1.482(12) . ? C6 N3 1.349(11) . ? C6 N2 1.364(10) . ? C7 N2 1.383(11) . ? C7 C8 1.395(12) . ? C7 C12 1.409(12) . ? C8 C9 1.362(13) . ? C8 H8 0.9500 . ? C9 C10 1.391(13) . ? C9 H9 0.9500 . ? C10 C11 1.364(12) . ? C10 H10 0.9500 . ? C11 C12 1.398(13) . ? C11 H11 0.9500 . ? C12 N3 1.414(11) . ? C13 N3 1.496(10) . ? C13 C14 1.523(9) . ? C13 H13A 0.9900 . ? C13 H13B 0.9900 . ? C14 C15 1.3900 . ? C14 C19 1.3900 . ? C15 C16 1.3900 . ? C15 H15 0.9500 . ? C16 C17 1.3900 . ? C16 H16 0.9500 . ? C17 C18 1.3900 . ? C17 H17 0.9500 . ? C18 C19 1.3900 . ? C18 H18 0.9500 . ? C19 H19 0.9500 . ? C20 N4 1.334(10) . ? C20 N5 1.363(11) . ? C21 N4 1.369(11) . ? C21 C22 1.405(12) . ? C21 C26 1.431(13) . ? C22 C23 1.359(12) . ? C22 H22 0.9500 . ? C23 C24 1.406(14) . ? C23 H23 0.9500 . ? C24 C25 1.389(13) . ? C24 H24 0.9500 . ? C25 C26 1.382(13) . ? C25 H25 0.9500 . ? C26 N5 1.408(12) . ? C27 N5 1.452(11) . ? C27 C28 1.501(12) . ? C27 H27A 0.9900 . ? C27 H27B 0.9900 . ? C28 C29 1.353(15) . ? C28 C33 1.371(13) . ? C29 C30 1.338(15) . ? C29 H29 0.9500 . ? C30 C31 1.438(19) . ? C30 H30 0.9500 . ? C31 C32 1.377(19) . ? C31 H31 0.9500 . ? C32 C33 1.329(15) . ? C32 H32 0.9500 . ? C33 H33 0.9500 . ? C34 N6 1.383(8) . ? C34 C35 1.420(8) . ? C34 C43 1.454(8) . ? C35 C36 1.426(8) . ? C35 H35 0.9500 . ? C36 O4 1.282(8) . ? C36 C37 1.425(8) . ? C37 C38 1.3900 . ? C37 C42 1.3900 . ? C38 C39 1.3900 . ? C38 H38 0.9500 . ? C39 C40 1.3900 . ? C39 H39 0.9500 . ? C40 C41 1.3900 . ? C40 H40 0.9500 . ? C41 O3 1.308(7) . ? C41 C42 1.3900 . ? C42 N6 1.382(7) . ? C43 O2 1.274(6) . ? C43 O1 1.287(6) . ? C34' N6' 1.394(9) . ? C34' C35' 1.417(8) . ? C34' C43' 1.449(8) . ? C35' C36' 1.415(8) . ? C35' H35' 0.9500 . ? C36' O4' 1.276(8) . ? C36' C37' 1.417(8) . ? C37' C38' 1.3900 . ? C37' C42' 1.3900 . ? C38' C39' 1.3900 . ? C38' H38' 0.9500 . ? C39' C40' 1.3900 . ? C39' H39' 0.9500 . ? C40' C41' 1.3900 . ? C40' H40' 0.9500 . ? C41' O3' 1.313(8) . ? C41' C42' 1.3900 . ? C42' N6' 1.390(9) . ? C43' O2' 1.277(6) . ? C43' O1' 1.279(7) . ?

loop__geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N6 Rul N1 172.4(4) . . ? N6 Rul N6' 11.5(12) . . ? N1 Rul N6' 172.5(7) . . ? N6 Rul O1' 73.9(5) . . ? N1 Rul O1' 101.2(4) . . ? N6' Rul O1' 73.9(6) . . ? N6 Rul N2 96.2(5) . . ? N1 Rul N2 78.7(3) . . ? N6' Rul N2 107.6(8) . . ? O1' Rul N2 100.2(6) . . ? N6 Rul N4 107.9(5) . . ? N1 Rul N4 77.1(3) . . ? N6' Rul N4 96.6(9) . . ? O1' Rul N4 85.1(6) . . ? N2 Rul N4 155.8(3) . . ? N6 Rul O1 76.1(4) . . ? N1 Rul O1 109.6(3) . . ? N6' Rul O1 74.6(5) . . ? O1' Rul O1 148.1(5) . . ? N2 Rul O1 93.8(9) . . ? N4 Rul O1 93.8(9) . . ? N6 Rul O3 81.9(4) . . ? N1 Rul O3 92.1(3) . . ? N6' Rul O3 94.3(5) . . ? O1' Rul O3 15.2(6) . . ? N2 Rul O3 86.7(4) . . ? N4 Rul O3 94.8(4) . . ? O1 Rul O3 158.0(4) . . ? N6 Rul O3' 79.3(5) . . ? N1 Rul O3' 106.0(5) . . ? N6' Rul O3' 78.7(7) . . ? O1' Rul O3' 152.6(7) . . ? N2 Rul O3' 88.1(16) . . ? N4 Rul O3' 97.9(16) . . ? O1 Rul O3' 6(2) . . ? O3 Rul O3' 159.8(7) . . ? N1 C1 C2 121.4(9) . . ? N1 C1 C6 109.4(7) . . ? C2 C1 C6 129.2(10) . . ? C3 C2 C1 117.5(10) . . ? C3 C2 H2 121.3 . . ? C1 C2 H2 121.3 . . ? C4 C3 C2 123.2(9) . . ?

S9

C4 C3 H3 118.4 . . ? C2 C3 H3 118.4 . . ? C3 C4 C5 117.4(10) . . ? C3 C4 H4 121.3 . . ? C5 C4 H4 121.3 . . ? N1 C5 C4 121.5(9) . . ? N1 C5 C20 109.1(8) . . ? C4 C5 C20 129.4(9) . . ? N3 C6 N2 110.5(8) . . ? N3 C6 C1 130.7(8) . . ? N2 C6 C1 118.7(8) . . ? N2 C7 C8 131.7(9) . . ? N2 C7 C12 109.0(8) . . ? C8 C7 C12 119.2(9) . . ? C9 C8 C7 118.3(9) . . ? C9 C8 H8 120.8 . . ? C7 C8 H8 120.8 . . ? C8 C9 C10 121.2(10) . . ? C8 C9 H9 119.4 . . ? C10 C9 H9 119.4 . . ? C11 C10 C9 123.3(10) ... ? C11 C10 H10 118.4 ... ? C9 C10 H10 118.4 ... ? C10 C11 C12 115.4(9) ... ? C10 C11 H11 122.3 . . ? C12 C11 H11 122.3 . . ? C11 C12 C7 122.6(9) . . ? C11 C12 N3 132.2(9) . . ? C7 C12 N3 105.1(8) . . ? N3 C13 C14 109.6(6) ... ? N3 C13 H13A 109.7 ... ? C14 C13 H13A 109.7 ... ? N3 C13 H13B 109.7 ... ? C14 C13 H13B 109.7 . . ? H13A C13 H13B 108.2 . . ? C15 C14 C19 120.0 . . ? C15 C14 C13 122.4(5) . . ? C19 C14 C13 117.6(5) . . ? C16 C15 C14 120.0 . . ? C16 C15 H15 120.0 . . ? C14 C15 H15 120.0 . . ? C15 C16 C17 120.0 . . ? C15 C16 H16 120.0...? C17 C16 H16 120.0...? C18 C17 C16 120.0...? C18 C17 H17 120.0...? C16 C17 H17 120.0...? C17 C18 C19 120.0 . . ? C17 C18 H18 120.0 . . ? C19 C18 H18 120.0 . . ? C18 C19 C14 120.0 . . ? C18 C19 H19 120.0 . . ? C14 C19 H19 120.0...? N4 C20 N5 113.5(8)...? N4 C20 C5 117.3(8)...? N5 C20 C5 129.2(8)...? N4 C21 C22 131.2(9)...? N4 C21 C26 108.1(8) . . ? C22 C21 C26 120.6(10) . . ? C23 C22 C21 116.6(10) . . ? C23 C22 H22 121.7 . . ? C21 C22 H22 121.7 . . ? C22 C23 C24 122.5(11) . . ? C22 C23 H23 118.7 . . ? C24 C23 H23 118.7 . . ? C25 C24 C23 122.5(11) . . ? C25 C24 H24 118.8 . . ? C23 C24 H24 118.8 . . ? C26 C25 C24 115.6(10) . . ? C26 C25 H25 122.2 . . ? C24 C25 H25 122.2...? C25 C26 N5 131.4(9)...? C25 C26 C21 122.2(10)...? N5 C26 C21 106.4(9)...? N5 C27 C28 114.1(7)...? N5 C27 H27A 108.7 . . ? C28 C27 H27A 108.7 . . ? N5 C27 H27B 108.7 . . ? C28 C27 H27B 108.7 . . ? H27A C27 H27B 107.6 . . ? C29 C28 C33 115.5(9) . . ? C29 C28 C27 123.2(9) . . ? C33 C28 C27 121.3(9) . . ? C30 C29 C28 126.2(13) . . ? C30 C29 H29 116.9 . . ? C28 C29 H29 116.9 . . ?

C29 C30 C31 117.1(13) . . ? C29 C30 H30 121.4 . . ? C31 C30 H30 121.4 . . ? C32 C31 C30 116.2(10) . . ? C32 C31 H31 121.9...? C30 C31 H31 121.9...? C33 C32 C31 122.8(12)...? C33 C32 H32 118.6...? C31 C32 H32 118.6...? C32 C33 C28 121.9(11) . . ? C32 C33 H33 119.1 . . ? C28 C33 H33 119.1 . . ? N6 C34 C35 117.5(8) . . ? N6 C34 C43 104.9(7) ... ? C35 C34 C43 136.8(7) ... ? C34 C35 C36 121.6(8) ... ? C34 C35 H35 119.2 ... ? C36 C35 H35 119.2 ... ? O4 C36 C37 121.0(7) . . ? O4 C36 C35 119.4(7) . . ? C37 C36 C35 119.5(7) . . ? C38 C37 C42 120.0 . . ? C38 C37 C36 123.8(6) . . ? C42 C37 C36 116.0(6) . . ? C39 C38 C37 120.0 . . ? C39 C38 H38 120.0 . . ? C37 C38 H38 120.0 . . ? C38 C39 C40 120.0 . . ? C38 C39 H39 120.0 . . ? C40 C39 H39 120.0 . . ? C39 C40 C41 120.0 . . ? C39 C40 H40 120.0...? C41 C40 H40 120.0...? O3 C41 C40 120.4(4) ...? O3 C41 C42 119.6(4) ...? C40 C41 C42 120.0...? N6 C42 C41 115.0(5) ...? N6 C42 C37 124.9(5) ...? C41 C42 C37 120.0 ...? O2 C43 O1 123.0(8) ...? O2 C43 C34 117.9(6) . . ? O1 C43 C34 119.1(6) . . ? C42 N6 C34 120.0(7) . . ? C42 N6 Ru1 114.5(6) . . ? C34 N6 Ru1 124.7(7) . . ? C43 O1 Ru1 114.3(7) . . ? C41 O3 Ru1 108.5(5) . . ? N6' C34' C35' 118.5(9) . . ? N6' C34' C43' 104.5(8) . . ? C35' C34' C43' 136.9(9) . . ? C36' C35' C34' 122.3(10) . . ? C36' C35' H35' 118.8 . . ? C34' C35' H35' 118.8 . . ? O4' C36' C35' 121.4(8) ... ? O4' C36' C37' 121.7(8) ... ? C35' C36' C37' 116.8(9) ... ? C38' C37' C42' 120.0 ... ? C38' C37' C36' 121.1(8) ... ? C42' C37' C36' 118.9(8) ... ? C39' C38' C37' 120.0 ... ? C39' C38' H38' 120.0 ... ? C37' C38' H38' 120.0 ... ? C40' C39' C38' 120.0 . . ? C40' C39' H39' 120.0 . . ? C38' C39' H39' 120.0 . . ? C39' C40' C41' 120.0 . . ? C39' C40' H40' 120.0 . . ? C41' C40' H40' 120.0 . . ? O3' C41' C42' 119.9(5) . . ? O3' C41' C40' 119.8(5) . . ? C42' C41' C40' 120.0..? C41' C42' C37' 120.0..? C41' C42' N6' 116.1(9)..? C37' C42' N6' 121.9(10)..? O2' C43' O1' 122.5(9)..? O2' C43' C34' 118.4(7) ... ? O1' C43' C34' 118.4(7) ... ? C42' N6' C34' 117.1(10) ... ? C42' N6' Ru1 112.2(11) ... ? C34' N6' Ru1 121.9(12) ...? C43' O1' Ru1 118.9(9) ...? C41' O3' Ru1 108.5(8) ...? C5 N1 C1 119.0(7) ...? C5 N1 Ru1 121.3(6) . . ? C1 N1 Ru1 119.6(6) . . ? C6 N2 C7 107.0(8) . . ? C6 N2 Ru1 113.5(6) . . ? C7 N2 Ru1 139.0(6) . . ? C6

N3 C12 108.3(7) . . ? C6 N3 C13 128.2(8) . . ? C12 N3 C13 122.7(8) . . ? C20 N4 C21 106.7(8) . . ? C20 N4 Ru1 115.1(6) . . ? C21 N4 Ru1 138.1(6) . . ? C20 N5 C26 105.2(7) . . ? C20 N5 C27 130.8(8) . . ? C26 N5 C27 123.6(9) . . ?

loop__geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 -1.3(12)? C6 C1 C2 C3 178.5(8)? C1 C2 C3 C4 0.0(14)? C2 C3 C4 C5 0.9(15)? C3 C4 C5 C1 C2 C3 178.5(8)? N1 C1 C6 N3 173.3(7)? C2 C1 C6 N3 -6.5(14)? N1 C1 C6 N2 -2.4(10)? C3 C4 C5 C20 -178.8(9)? N2 C7 C8 C9 178.4(9)? C12 C7 C8 C9 -0.1(12)? C7 C8 C9 C10 C11 C12 N3 -178.3(8)? N2 C7 C12 C11 C12 -1.7(14)? C10 C11 C12 C7 0.0(13)? C10 C11 C12 N3 -178.3(8)? N2 C7 C12 C11 -177.9(7)? C8 C7 C12 C11 0.9(13)? N2 C7 C12 C11 -177.9(7)? C8 C7 C12 C11 0.9(13)? N2 C7 C12 C11 -177.9(7)? C10 C11 C12 C7 0.0(13)? C13 C14 C15 C16 -179.6(8)? C14 C15 C16 C17 0.0? C15 C16 C17 C18 0.0? C16 C17 C18 C19 0.0? C17 C18 C19 C14 0.0? C15 C14 C19 C18 0.0? C13 C14 C19 156.6(6)? N1 C5 C20 N4 1.9(10)? C4 C5 C20 N4 -179.7(8)? N1 C5 C20 N5 -176.5(7)? C4 C5 C20 N5 1.9(15)? N4 C21 C22 C23 -176.7(9)? C26 C21 C22 C23 0.8(12)?

C21 C22 C23 C24 -1.4(14) ? C22 C23 C24 C25 1.0(16) ? C23 C24 C25 C26 0.0(14) ? C24 C25 C26 N5 179.5(8)? C24 C25 C26 C21 -0.5(13)? N4 C21 C26 C25 178.1(8)? C22 C21 C26 C25 0.1(12)? N4 C21 C26 N5 -1.9(9) ? C22 C21 C26 N5 -179.9(7) ? N5 C27 C28 C29 36.6(16) ? N5 C27 C28 C33 -145.8(10) ? C33 C28 C29 C30 -3(2) ? C27 C28 C29 C30 174.9(14) ? C29 C28 C33 C32 2.0(19) ? C27 C28 C33 C32 -175.7(12) ? N6 C34 C35 C36 -6(3) ? C43 C34 C35 C36 -174(2) ? C34 C35 C36 O4 -178.7(19)? C34 C35 C36 C37 0(3)? O4 C36 C37 C38 -3(3)? C35 C36 C37 C38 178.7(14)? O4 C36 C37 C42 -177.8(16)? C35 C36 C37 C42 4(2)? C42 C37 C38 C39 0.0? C36 C37 C38 C39 -174.7(15) ? C37 C38 C39 C40 0.0 ? C38 C39 C40 C41 0.0 ? C39 C40 C41 O3 -177.3(12) ? C39 C40 C41 C42 0.0 ? O3 C41 C42 N6 -6.2(14) ? C40 C41 C42 N6 176.5(12) ? O3 C41 C42 C37 177.3(12) ? C40 C41 C42 C37 0.0 ? C38 C37 C42 N6 -176.1(13) ? C36 C37 C42 N6 -1.0(15) ? C38 C37 C42 C41 0.0 ? C36 C37 C42 C41 175.1(14) ? N6 C34 C43 O2 -168.5(18) ? C41 C42 N6 C34 178.1(14) ? C37 C42 N6 C34 -5.7(19) ? C41 C42 N6 Ru1 8.0(13) ? C37 C42 N6 Ru1 -175.8(7) ? C43 C34 N6 C42 -179.5(14)? C35 C34 N6 Ru1 178.0(13)? C43 C34 N6 Ru1 -10(2)? O1' Ru1 N6 C34 -161.9(16)? N2 Ru1 N6 C34 99.2(15)? N4 Ru1 N6 C34 -82.7(15)? O1 Ru1 N6 C34 6.9(17)? O3 Ru1 N6 C34 -175.1(15) ? O3' Ru1 N6 C34 12(2) ? O2 C43 O1 Ru1 172.6(15) ? O3' Ru1 O1 C43 -121(15) ? C40 C41 O3 Ru1 178.8(6) ? C42 C41 O3 Ru1 1.5(12) ? N6 Ru1 O3 C41 2.2(10) ? N1 Ru1 O3 C41 177.5(9) ? N6' Ru1 O3 C41 -9.1(12) ? O1' Ru1 O3 C41 -55(2) ? N2 Ru1 O3 C41 99.0(9) ? N4 Ru1 O3 C41 -105.2(9) ? C40' C41' O3' Ru1 179.4(18) ? C4 C5 N1 C1 -0.7(12) ? C20 C5 N1 C1 177.9(7)? C4 C5 N1 Ru1 -178.7(6)? C20 C5 N1 Ru1 -0.2(9)? C2 C1 N1 C5 1.6(11)? C6 C1 N1 C5 -178.2(7) ? C2 C1 N1 Ru1 179.7(6) ? C6 C1 N1 Ru1 -0.2(8) ? O1' Ru1 N1 C5 81.3(8) ? N2 Ru1 N1 C5 179.7(6)? N4 Ru1 N1 C5 -0.9(6)? O1 Ru1 N1 C5 -90.4(11)? O3 Ru1 N1 C5 93.5(7)? O3' Ru1 N1 C5 -95.6(18)? O1' Ru1 N1 C1 -96.7(8)? N2 Ru1 N1 C1 1.6(5)? N4 Ru1 N1 C1 -179.0(6)? O1 Ru1 N1 C1 91.6(11) ? O3 Ru1 N1 C1 -84.5(6) ? O3' Ru1 N1 C1 86.4(18) ? N3 C6 N2 C7 0.9(9) ?

C1 C6 N2 C7 177.4(7)? N3 C6 N2 Ru1 -172.8(5)? C1 C6 N2 Ru1 3.8(9)? C8 C7 N2 C6 -179.6(8)? C12 C7 N2 C6 -1.0(9)? C8 C7 N2 Ru1 -8.5(15)? C12 C7 N2 Ru1 170.1(6)? N6 Ru1 N2 C6 171.4(6)? N1 Ru1 N2 C6 -2.8(5)? N6' Ru1 N2 C6 172.9(7)? O1' Ru1 N2 C6 96.7(6)? N4 Ru1 N2 C6 -4.2(9)? O1 Ru1 N2 C6 -112.1(6)? O3 Ru1 N2 C6 89.9(6)? O3' Ru1 N2 C6 -109.6(7)? N6 Ru1 N2 C7 0.7(9)? N1 Ru1 N2 C7 -173.5(8) ? N6' Ru1 N2 C7 2.2(10) ? O1' Ru1 N2 C7 -74.0(9) ? N4 Ru1 N2 C7 -175.0(7) ? O1 Ru1 N2 C7 77.2(9)? O3 Ru1 N2 C7 -80.8(8)? O3' Ru1 N2 C7 79.7(9)? N2 C6 N3 C12 -0.4(9)? C1 C6 N3 C12 -176.5(8)? N2 C6 N3 C13 170.2(7)? C1 C6 N3 C13 -5.8(13)? C11 C12 N3 C6 178.3(9)? C7 C12 N3 C6 -0.2(8) ? C11 C12 N3 C13 7.0(13) ? C7 C12 N3 C13 -171.5(7) ? C14 C13 N3 C6 -68.4(10) ? C14 C13 N3 C12 101.1(8) ? N5 C20 N4 C21 -1.6(9) ? C5 C20 N4 C21 179.7(7) ? N5 C20 N4 Ru1 176.0(5)? C5 C20 N4 Ru1 -2.7(9)? C22 C21 N4 C20 179.8(8)? C26 C21 N4 C20 2.1(9)? C22 C21 N4 Ru1 3.1(14)? C26 C21 N4 Ru1 -174.6(6)? N6 Ru1 N4 C20 -172.1(6)? N1 Ru1 N4 C20 1.9(5)? N6' Ru1 N4 C20 -173.9(7)? O1' Ru1 N4 C20 -100.8(7)? N2 Ru1 N4 C20 3.4(9)? O1 Ru1 N4 C20 111.3(6)? O3 Ru1 N4 C20 -89.1(6)? O3' Ru1 N4 C20 106.7(8)? N6 Ru1 N4 C21 4.4(9)? N1 Ru1 N4 C21 178.4(8)? N6' Ru1 N4 C21 2.6(9)? O1' Ru1 N4 C21 75.7(9)? N2 Ru1 N4 C21 179.8(7) ? O1 Ru1 N4 C21 -72.3(9) ? O3 Ru1 N4 C21 87.4(8) ? O3' Ru1 N4 C21 -76.9(10) ? N4 C20 N5 C26 0.4(9) ? C5 C20 N5 C26 178.9(8) ? N4 C20 N5 C27 -172.0(8) ? C5 C20 N5 C27 6.5(14) ? C25 C26 N5 C20 -179.1(9)? C21 C26 N5 C20 0.9(8)? C25 C26 N5 C27 -6.0(14)? C21 C26 N5 C27 174.0(7)? C28 C27 N5 C20 72.1(12)? C28 C27 N5 C26 -99.1(10)? diffrn measured fraction theta max 0.988 diffrn reflns theta full 22.58

_diffrn_measured_fraction_theta_full_0.988_refine_diff_density_max_0.928_refine_diff_density_min_-1.045 refine_diff_density_rms_0.106

start Validation Reply Form _vrf_THETM01_1;

PROBLEM: The value of sine(theta_max)/wavelength is less than 0.550

RESPONSE: This is due to the weak diffraction ability of the crystal selected for the X-ray experiment. Also the crystal is easily deteriorated when the samples are taken out from the mother liquid, even though the crystal is tested at low temperature(100K).

;_vrf_PLAT411_1;

PROBLEM: Short Inter H...H Contact H30 .. H40' .. 1.76 Ang. RESPONSE: This is due to the disorder of the ligand in the coordination molecue which shoud be omitted.

;_vrf_PLAT602_1;

PROBLEM: VERY LARGE Solvent Accessible VOID(S) in Structure ! Info

RESPONSE: Beacuse of the weak diffraction ability of the crystal selected for the X-ray experiment, it is difficult to locate the position of the solvent molecules. In the final refinement, the procedure 'SQUEEZE/PLATON' was applied to treatthe highly disordered solvent.;# end Validation Reply Form