Electronic Supplementary Information

Hierarchically porous Fe-N-C nanospindles derived from porphyrinic coordination network for Oxygen Reduction Reaction

Xing Hua, Jin Luo, Chencheng Shen and Shengli Chen*

Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.

E-mail: slchen@whu.edu.cn;

Figure S1. SEM images of (a) PCMMR, (b) PCNNS and (c) PCNNP.

Figure S2. SEM images of (a) PCNMR-Phen-NaCl- H_2SO_4 , (b) PCNNS-Phen-NaCl- H_2SO_4 , (c) PCNNP-Phen-NaCl- H_2SO_4 and (d) PCNNS-Phen-NaCl.

Figure S3. (a) XRD patterns and (b) Raman spectra of the Fe-N-C catalysts. (The vertical lines in (a) show the standard peak positions for ZrO₂.)

Figure S4. Raman spectra of PCNNS-Phen-H₂SO₄.

Figure S5. CV curves of Fe-N-C series in Ar- and O_2 -saturated 0.1 M KOH solution at a scan rate of 50 mV s⁻¹. (Dash line is the CV curve obtained in Ar-saturated solution)

Figure S6. The RRDE voltammograms of Fe-N-C series in O₂-saturated 0.1 M KOH solution.

Figure S7. ORR polarization curves of other Fe-N-C series for a compassion obtained at an electrode rotating speed of 1600 rpm and a scan rate of 5 mV s⁻¹ in O_2 -saturated 0.1 M KOH solution.

Figure S8. CV curves of Fe-N-C series in Ar- and O_2 -saturated 0.1 M HClO₄ solution at a scan rate of 50 mV s⁻¹. (Dash line is the CV curve obtained in Ar-saturated solution)

Figure S9. The RRDE voltammograms of Fe-N-C series in O₂-saturated 0.1 M HClO₄ solution.

Catalyst	Catalyst loading (µg cm ⁻²)	Onset potential (V vs RHE)	Half wave potential (V vs RHE)	Kinetic current density (mA cm ⁻²)	Reference
PCNNS-Phen-NaCl- H ₂ SO ₄	450	1.01	0.87	43.69 at 0.8 V	This work
FeTPP/C-800	100	0.95	0.837	10.3 at 0.8 V	1
Fe-N-C-700	30	0.93	0.802	19.4 at 0.58 V	2
Fe-N-Graphene	400	1.01	0.801	-	3
N-doped Fe/Fe3C@C- RGO	700	0.95	0.86	30.25 at 0.7 V	4
PANI-4.5Fe- HT2(SBA-15)	610	0.95	0.82	7.4 at 0.82 V	5
FePhen@MOF-ArNH ₃	600	1.030	0.86	-	6
PCN-FeCo/C	200	1.000	0.85	-	7
Fe-N/C	800	0.98	0.88	-	8
Fe ₃ C@NCNF-900	150	0.98	0.80	15 at 0.4 V	9
Fe-N-CC	100	0.94	0.83	18.3 at 0.58 V	10
Fe,N-OMC	80	0.99	0.85	1.98 at 0.9 V	11
Fe-N-C	500	0.991	0.837	-	12
S-FeNC	160	0.911	0.799	-	13
C-Fe-Z8-Ar	560	0.95	0.82	-	14
COP@K10-Fe-900	200	0.97	0.85		15
FeN2/NOMC-3	500	1.05	0.86	45.2 at 0.79 V	16
Fe30NC-Ar700-NH ₃ - 45%	800	-	0.87	1.91 at 0.9 V	17

Table S1. Comparison of ORR electrocatalytic performances between PCNNS-Phen-NaCl- H_2SO_4 and those reported Fe-N-C catalysts in alkaline medium.

	Catalyst	Onset	Half wave	Kinetic current	
Catalyst	loading (µg cm ⁻²)	potential (V vs RHE)	potential (V vs RHE)	density (mA cm ⁻²)	Reference
PCNNS-Phen-NaCl- H ₂ SO ₄	450	0.94	0.76	1.70 at 0.8 V	This work
FeTPP/C-800	100	0.80	0.667	0.008 at 0.8 V	1
Fe-N-C-700	30	0.89	-	-	2
Fe-N-graphene	400	0.91	0.73	-	3
FePhen@MOF-ArNH ₃	600	0.93	0.77	-	6
PCN-FeCo/C	200	0.90	0.76	-	7
Fe-N/C	800	0.92	0.79		8
Fe-N-CC	100	0.80	0.52	4.85 at 0.46 V	10
S-FeNC	160	0.825	0.710	-	13
Fe ₃ C/C-700	600	0.90	0.73	-	18
Fe-N-GC-900	600	0.87	0.74	-	19
FeNP-C	600	0.87	0.72		20
Fe3C/NG-800	800	0.90	0.77	-	21
PpPD-Fe-C	900	0.826	0.718	-	22
Fe-N-HCMS	250	0.80	-	4.6 at 0.6 V	23
FeNCS-1000	495	0.95	0.71	-	24

Table S2. Comparison of ORR electrocatalytic performances between PCNNS-Phen-NaCl- H_2SO_4 and those reported Fe-N-C catalysts in acid medium.

References

- 1 N. Ramaswamy, U. Tylus, Q. Jia and S. Mukerjee, J. Am. Chem. Soc., 2013, 135, 15443.
- 2 A. Kong, B. Dong, X. Zhu, Y. Kong, J. Zhang and Y. Shan, Chem. Eur. J., 2013, 19, 16170.
- 3 C. He, J. J. Zhang and P. K. Shen, J. Mater. Chem. A, 2014, 2, 3231.
- 4 Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui and J. Chen, Adv. Energy Mater., 2014, 4, 1400337.
- 5 X. Yan and B. Xu, J. Mater. Chem. A, 2014, 2, 8617.
- 6 K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M. Sougrati, F. Jaouen and S. Mukerjee, *Nat. Commun.*, 2015, 6, 7343.
- 7 Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu and P. Feng, Adv. Mater., 2015, 27, 3431.
- 8 Y. J. Sa, D. J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T. Y. Kim and S. H. Joo, *J. Am. Chem. Soc.*, 2016, **138**, 15046.
- 9 G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai and L. Jiang, ACS Appl. Mater. Interfaces, 2016, 8, 4118.
- 10 G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M. Titirici, ACS Nano, 2016, 10, 5922.
- 11 X. Liu, S. Zou and S. Chen, Nanoscale, 2016, 8, 19249.
- 12 X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P. M. Ajayan and Z. Zhang, Adv. Funct. Mater., 2016, 26, 5708.
- 13 K. Hu, L. Tao, D. Liu, J. Huo, S. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 19379.
- 14 X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G. Wu and X. Li, *Nano Energy*, 2016, 25, 110.
- 15 J. Guo, Y. Cheng and Z. Xiang, ACS Sustainable Chem. Eng., 2017, 5, 7871.
- 16 H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu and S. Guo, *Nano Energy*, 2017, 35, 9.
- 17 Q. Wei, G. Zhang, X. Yang, R. Chenitz, D. Banham, L. Yang, S. Ye, S. Knights and S. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 36944.
- 18 Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum and Q. Li, Angew. Chem. Int. Ed., 2014, 53, 3675.
- 19 A. Kong, X. Zhu, Z. Han, Y. Yu, Y. Zhang, B. Dong and Y. Shan, ACS Catal., 2014, 4, 1793.
- 20 M. Zhou , C. Yang and K. Chan, Adv. Energy Mater., 2014, 4, 1400840.
- 21 Y. Zhu, B. Zhang, X. Liu, D. Wang and D. S. Su, Angew. Chem. Int. Ed., 2014, 53, 1.
- 22 Y. Hu, J. Zhu, Q. Lv, C. Liu, Q. Li and W. Xing, Electrochimica Acta, 2015, 155, 335.
- 23 M. Xiao, J. Zhu, L. Feng, C. Liu and W. Xing, Adv. Mater., 2015, 27, 2521.
- 24 T. Zhou, Y. Zhou, R. Ma, Q. Liu, Y. Zhu and J. Wang, J. Mater. Chem. A, 2017, 5, 12243.