Electronic supplementary information for the article

Ten-fold Boost of Catalytic Performance in Thiol-yne Click Reaction Enabled by Palladium Diketonate Complex with Hexafluoroacetylacetonate Ligand

Dmitry B. Eremin, ^a Daniil A. Boiko, ^{a, b} Eugenia V. Borkovskaya, ^a Victor N. Khrustalev, ^c Victor M. Chernyshev, ^d Valentine P. Ananikov ^{a, b, *}

 ^a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russia, e-mail: val@ioc.ac.ru
 ^b Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991, Russia
 ^c Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russia
 ^d Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, Novocherkassk 346428, Russia

CONTENTS

Mate	rials and Methods	2
1.	General procedures	2
2.	NMR Experiments	2
3.	ESI-MS Measurements	2
4.	Synthesis of Pd(II)-complexes	2
5.	FE-SEM-EDX studies	3
6.	Catalytic thiol-yne reaction	3
7.	Optimized procedure for regioselective catalytic addition of thiols to alkynes	3
8.	X-ray crystal structure determination	3
Optin	nization of the reaction conditions	4
SEM	EDX study of [Pd(SPh)2]n precipitates	6
X-ray	v crystallography data for Pd complexes	
NMR	spectra of synthesized complexes	15
ESI-N	AS spectra of synthesized complexes	20
Chara	acterization of the thiol-yne reaction products	22
NMR	spectra of the thiol-yne reaction products	27
Refer	ences	

Materials and Methods

1. General procedures

All reactions were performed in screw top glass tubes with magnetic stir bars. All reagents were purchased from commercial sources and checked by ¹H, ¹³C, and ¹⁹F NMR spectroscopy prior to use. The yields were evaluated by ¹H NMR spectra. CDCl₃, CD₃CN, C₆D₆, toluene- d_8 (99.8%) for NMR spectroscopy were obtained from Deutero GmbH and used as received. LC-MS-grade solvents for ESI-MS experiments were obtained from Merck and used fresh as purchased. All samples for the ESI-MS experiments were prepared in 1.8 mL Agilent screw top glass vials.

2. NMR Experiments

NMR measurements were performed using Bruker DRX500 spectrometer equipped with 5-mm BBO probe head operating at 500.1, 125.8, and 470.5 MHz for ¹H, ¹³C, and ¹⁹F respectively, or using Bruker AVANCE 400 spectrometer at 400.1, 100.1, and 376.4 MHz for ¹H, ¹³C and ¹⁹F respectively, or using Bruker Fourier HD300 spectrometer at 300.1, 75.5 MHz for ¹H, and ¹³C respectively, in CDCl₃, CD₃CN, toluene- d_8 , or C₆D₆. The spectra of reaction products were acquired immediately after the reactions and processed using TopSpin 3.5 software package. The ¹H and ¹³C chemical shifts were referenced to internal standards provided by the solvent, and the ¹⁹F chemical shifts were referenced to perfluorotoluene or CCl₃F as an internal standard.

3. ESI-MS Measurements

High-resolution mass spectra were recorded on a Bruker maXis Q-TOF instrument equipped with an electrospray ionization (ESI) ion source. The measurements were performed in positive (+) MS ion mode (HV capillary: 4500 V; spray shield offset: -500 V) with a scan range of m/z 50 – 3000. External calibration of the mass spectrometer was performed using a freshly prepared sodium formate calibrant solution. Direct syringe injection was used for all of the analyzed solutions in MeCN (flow rate: $3 \,\mu L \,\min^{-1}$). Nitrogen was used as the nebulizer gas (0.4 bar) and dry gas (4.0 L \min^{-1} , 180 °C). All recorded spectra were processed using the Bruker Data Analysis 4.0 software package.

4. Synthesis of Pd(II)-complexes

 $Pd(acac)_2$ was prepared according to the published procedure,¹ which was also used for the preparation of $Pd(hfpd)_2$. $Pd(acpd)_2$ was prepared according to the published procedure,² which was also utilized for the preparation of $Pd(tfpd)_2$.

Pd(acac)₂. ¹H NMR (500.1 MHz, CDCl₃) δ, ppm: 2.07 (12H, s), 5.41 (2H, s). ¹³C{¹H} NMR (125.8 MHz, CDCl₃) δ, ppm: 187.3, 101.7, 25.6. ESI-MS: $[M + Na]^+$ calcd for C₁₀H₁₄O₄PdNa *m/z* 326.9824, found *m/z* 326.9817 ($\Delta = 2.1$ ppm). Anal. Calcd for C₁₀H₁₄O₄Pd: C, 39.43; H, 4.63. Found: C, 39.49; H, 4.65.

Pd(acpd)₂. ¹H NMR (500.1 MHz, CDCl₃) δ, ppm: 2.10 (12H, s), 2.43 (6H, s). ¹³C{¹H} NMR (125.8 MHz, CDCl₃) δ, ppm: 203.9, 185.4, 120.3, 33.6, 25.3. ESI-MS: $[M + Na]^+$ calcd for C₁₄H₁₈O₆PdNa *m/z* 411.0037, found *m/z* 411.0030 ($\Delta = 1.7$ ppm). Anal. Calcd for C₁₄H₁₈O₆Pd: C, 43.26; H, 4.67. Found: C, 43.51; H, 4.77.

Pd(tfpd)₂. ¹H NMR (500.1 MHz, CDCl₃) δ, ppm: 2.26 (6H, s), 5.91 (2H, s). ¹³C{¹H} NMR (125.8 MHz, CDCl₃) δ, ppm: 195.7, 168.2 (q, J = 34.2 Hz), 116.1 (q, J = 283.2 Hz), 98.1, 27.0. ¹⁹F NMR (470.5 MHz, C₆D₆) δ, ppm: -71.6 (s). ESI-MS: $[M + Na]^+$ calcd for C₁₀H₈F₆O₄PdNa *m/z* 434.9258, found *m/z* 434.9262 (Δ = 0.9 ppm). Anal. Calcd for C₁₀H₈F₆O₄Pd: C, 29.11; H, 1.95; F, 27.63. Found: C, 29.03; H, 1.90; F, 27.81.

Pd(hfpd)₂. ¹H NMR (500.1 MHz, CDCl₃) δ, ppm: 6.40 (2H, s). ¹³C{¹H} NMR (125.8 MHz, CDCl₃) δ, ppm: 176.4 (q, J = 37.0 Hz), 114.9 (q, J = 284.0 Hz), 94.0. ¹⁹F NMR (470.5 MHz, C₆D₆) δ, ppm: -72.3 (s). ESI-MS: $[M + OH + 2Na]^+$ calcd for C₁₀H₃F₁₂O₅PdNa₂ *m/z* 582.8618, found *m/z* 582.8616 (Δ = 0.3 ppm). Anal. Calcd for C₁₀H₂F₁₂O₄Pd: C, 23.07; H, 0.39; F, 43.80. Found: C, 22.93; H, 0.52; F, 43.67.

5. FE-SEM-EDX studies

For the FE-SEM measurements, powder samples were placed onto the surface of aluminum foil from a suspension in ethanol. A small piece of foil containing the powder was mounted on a 15-mm aluminum specimen stub and fixed by conductive silver paint. Coating with a thin film (15 nm) of carbon was performed using a Cressington 208 carbon coater. The observations were carried out using a Hitachi SU8000 field-emission scanning electron microscope. Images were acquired in secondary electron mode with an accelerating voltage of 2 kV and a working distance of 4-5 mm. EDS-SEM studies were carried out using an Oxford Instruments X-max EDS system. For quantitative analysis, internal standards were used after calibration. Additional samples without carbon coating were also studied.

6. Catalytic thiol-yne reaction

A solution (1 mL) of a Pd precatalyst in appropriate solvent (Tables 1-3, S1-S3) was prepared by dilution of appropriate aliquot of a solution of $Pd(acac)_2$, $Pd(acpd)_2$, $Pd(tfpd)_2$, or $Pd(hfpd)_2$ (1.0 $\times 10^{-5}$ mol). Alkyne **1a** (1.0 $\times 10^{-3}$ mol) was added to the Pd precatalyst solution. The pre-reaction was carried out at 90 °C under stirring for 1 hour. After heating, the γ -terpinene (1.0 $\times 10^{-3}$ mol) and thiol **2a** (1.0 $\times 10^{-3}$ mol) were charged, and the reaction mixture was heated at 140 °C for 24 hours, unless otherwise stated. The resulting products in the mixture were analyzed by ¹H NMR with 1,4-dioxane additive as internal quantitative standard (for a solvent and a temperature selection see section 2.3). NMR spectra of the known products were referenced to the literature data.^{3,4}

7. Optimized procedure for regioselective catalytic addition of thiols to alkynes

To 1 mL of toluene solution of $Pd(hfpd)_2$ (1.0×10^{-6} mol) prepared by dilution a corresponding alkyne 1 (1.0×10^{-3} mol) was added and heated with stirring at 90 °C for 1 h. Then, γ -terpinene (1.0×10^{-3} mol), corresponding arylthiol 2 (1.0×10^{-3} mol), and, if required (Scheme 3), Et₃N (1.0×10^{-4} mol) were added. The resultant mixture was heated at 140 °C for 24 h, then cooled to room temperature. The products formed (Scheme 3) were analyzed by NMR as described in the section 6 of ESI and purified with column chromatography on silica gel (60; 0.04 - 0.063 mm) with gradient elution from hexanes to ethyl acetate.

8. X-ray crystal structure determination

The data were collected on a Bruker SMART APEX-II CCD diffractometer ((Mo_K)-radiation, graphite monochromator, ω and φ scan mode) and corrected for absorption using SADABS program. The structures were solved by direct methods and refined by full-matrix least squares technique on F² with anisotropic displacement parameters for non-hydrogen atoms. All hydrogen atoms were placed in calculated positions and refined within the riding model with fixed isotropic displacement parameters ($U_{iso}(H) = 1.5 U_{eq}(C)$ for the CH₃-groups and $U_{iso}(H) = 1.2 U_{eq}(C)$ for the other groups). All calculations were carried out using SHELXTL program. Crystallographic data has been deposited with the Cambridge Crystallographic Data Center, Cambridge, UK. Molecular structures of Pd(acpd)₂ and Pd(tfpd)₂ were determined by the single crystal X-ray diffraction analysis of, respectively, Pd(acpd)₂ and Pd(tfpd)₂ samples crystallized from their concentrated solutions in dichloromethane with small admixtures of diethyl ether.

Optimization of the reaction conditions

	Pd		Tomporatura	Time	Conversion	Viold	Solootivity
Entry	loading,	Solvent	°C	h		i ieiu, %	3a:4a
	mol%				, 0		
1 ^b	1	THF	70	1	52	30	4:3
2 ^c	1	THF	70	1	53	33	4:3
3 ^d	1	THF	70	1	46	14	7:16
4 ^e	1	THF	70	1	39	35	9:1
5 ^e	1	Toluene	70	1	72	68	17:1
6 ^e	1	Benzene	70	1	68	45	2:1
7 ^e	1	Acetonitrile	70	1	50	27	1:1
8 ^e	1	Methanol	70	1	7	7	100:1
9 ^e	1	DCM	70	1	31	31	100:1
10 ^e	1	Chloroform	70	1	86	82	22:1
11 ^e	1	Ethyl acetate	70	1	64	33	1:1
12 ^e	1	Pentane	70	1	56	50	9:1
13 ^e	1	Hexane	70	1	74	22	2:7
14 ^e	1	Cyclohexane	70	1	81	44	6:5
15 ^e	1	Solvent free	70	1	71	51	5:2
16 ^e	1	Chloroform	90	1	91	87	23:1
17 ^e	1	Toluene	90	1	98	95	32:1
18 ^e	1	Pentane	90	1	95	89	15:1
19 ^e	1	DCM	90	1	67	65	30:1
20 ^e	1	THF	90	1	49	46	18:1
21 ^e	0.1	Toluene	90	1	74	13	1:5
22 ^{e,f}	0.1	Toluene	90	1	60	58	29:1
23 ^{e,f}	0.1	Toluene	90	3	93	90	30:1
$24^{e,f}$	0.1	Toluene	90	24	94	93	93:1

Table S1. Reaction conditions optimization^a

^a 1:1 molar ratio of alkyne – 1a and PhSH – 2a ^b 1a was added after 2a; ^c 2a was added after the 1a; ^d Pd(hfpd)₂ was pre-heated with 2a for 1 hour at the reaction temperature with subsequent addition of 1a; ^e Pd(hfpd)₂ was pre-heated with 1a for 1 hour at the reaction temperature with subsequent addition of 2a;

^f 1 eq. of γ -terpinene was added prior **2a** addition

Table S2. Selectivity of the reactions studied at different temperatures ^a

Entry	Solvent	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C
1	Chloroform	14:1	16:1	15:1	16:1	16:1	23:1
2	Toluene	100:1	100:1	7:1	18:2	26:1	32:1
3	Pentane	1:5	7:3	5:1	9:1	14:1	15:1
4	DCM	100:1	100:1	100:1	100:1	50:1	30:1
5	THF	8:1	7:3	5:3	15:1	14:1	18:1

^a 1:1 molar ratio of alkyne – **1a** and PhSH – **2a**, 1 mol% of **Pd(hfpd)**₂ was pre-heated with **1a** for 1 hour at the reaction temperature with subsequent addition of 2a;

Table S3. Selectivity	of the reactions	studied at dif	ferent catalyst	loadings ^a
Lable Dot Delectivity	of the reactions	Studied at all	ioroni cuturyst	iouuings

Entry	mol% cat.	90 °C 3h	90 °C 24h	110 °C 24h	140 °C 24h
1	1	100:1	100:1	—	-
2	0.1	100:1	100:1	100:1	100:1
3	0.05	100:1	100:1	100:1	100:1
4	0.01 ^b	20:1	10:1	2:1	5:2

^a Reaction in toluene, 1:1 molar ratio of alkyne – **1a** and PhSH – **2a**, 0.1 mol% of **Pd(hfpd)**₂ was pre-heated with **1a** for 1 hour at 90 °C with subsequent addition of 1 eq. of γ -terpinene followed by addition of **2a**; ^b 10 mol% of Et₃N added

SEM-EDX study of [Pd(SPh)₂]_n precipitates

Figure S1. EDX spectrum of particles formed in the reaction mixture from $Pd(acac)_2$, isolated after 3 hours from the reaction completion.

Figure S2. EDX spectrum of particles formed in the reaction mixture from $Pd(acpd)_2$, isolated after 3 hours from the reaction completion.

Figure S3. EDX spectrum of particles formed in the reaction mixture from **Pd(tfpd)**₂, isolated after 3 hours from the reaction completion.

X-ray crystallography data for Pd complexes

X-ray Crystal Structure Determination. The crystal of $Pd(acpd)_2 \cdot CH_2Cl_2$ ($C_{15}H_{20}O_6Cl_2Pd$, M = 473.61) is monoclinic, space group C2/m, at T = 120 K: a = 11.6869(5) Å, b = 8.8935(4) Å, c = 8.5510(4) Å, $\beta = 90.223(1)^\circ$, V = 888.76(7) Å³, Z = 2, $d_{calc} = 1.770$ g/cm³, F(000) = 476, $\mu = 1.372$ mm⁻¹. 6959 total reflections (1717 unique reflections, $R_{int} = 0.020$) were measured on a three-circle Bruker APEX-II CCD diffractometer (λ (MoK_{α})-radiation, graphite monochromator, φ and ω scan mode, $2\theta_{max} = 65.28^\circ$) and corrected for absorption ($T_{min} = 0.666$; $T_{max} = 0.777$).⁵ The structure was determined by direct methods and refined by full-matrix least squares technique on F^2 with anisotropic displacement parameters for non-hydrogen atoms. The crystal of **Pd(acpd)**₂ contained a solvate dichloromethane molecule disordered over two sites relative to an inversion center with the equal occupancies. The hydrogen atoms were placed in calculated positions and refined within riding model with fixed isotropic displacement parameters [$U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃-groups and $1.2U_{eq}(C)$ for the other groups]. The final divergence factors were $R_1 = 0.022$ for 1712 independent reflections with $I > 2\sigma(I)$ and $wR_2 = 0.056$ for all independent reflections, S = 1.069. All calculations were carried out using the SHELXTL program.⁶

The crystal of $Pd(tfpd)_2$ (C₁₀H₈F₆O₄Pd, M = 412.56) is triclinic, space group *P*-1, at T = 100 K: a = 4.7881(8) Å, b = 7.9629(13) Å, c = 8.7923(15) Å, $\alpha = 80.994(3)^\circ$, $\beta = 77.330(3)^\circ$, $\gamma = 72.621(3)^\circ$, V = 310.64(9) Å³, Z = 1, $d_{calc} = 2.205$ g/cm³, F(000) = 200, $\mu = 1.584$ mm⁻¹. 4832 total reflections (2252 unique reflections, $R_{int} = 0.030$) were measured on a three-circle Bruker APEX-II CCD diffractometer (λ (MoK_{α})-radiation, graphite monochromator, φ and ω scan mode, $2\theta_{max} = 65.20^\circ$) and corrected for absorption ($T_{min} = 0.737$; $T_{max} = 0.777$). The structure was determined by direct methods and refined by full-matrix least squares technique on F^2 with anisotropic displacement parameters for non-hydrogen atoms. The hydrogen atoms were placed in calculated positions and refined within riding model with fixed isotropic displacement parameters [$U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃-groups and $1.2U_{eq}(C)$ for the other groups]. The final divergence factors were $R_1 = 0.031$ for 2196 independent reflections with $I > 2\sigma(I)$ and $wR_2 = 0.059$ for all independent reflections, S = 1.031. All calculations were carried out using the SHELXTL program.

Crystallographic data for the investigated compounds have been deposited with the Cambridge Crystallographic Data Center, CCDC 1431131 ($Pd(acpd)_2 \cdot CH_2Cl_2$) and CCDC 1431132 ($Pd(tfpd)_2$). Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

$Pd(acpd)_2$

Table S4.	Crystal	data a	and	structure	refinement	for	Pd(ac)	pd) ₂ .
-----------	---------	--------	-----	-----------	------------	-----	--------	--------------------

•	
Identification code	Pd(acpd) ₂
Empirical formula	$C_{15}H_{20}Cl_2O_6Pd$
Formula weight	473,61
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	<i>C</i> 2/m
Unit cell dimensions	a = 11.6869(5) Å
	b = 8.8935(4) Å
	c = 8.5510(4) Å
	$\alpha = 90^{\circ}.$
	$\beta = 90.2230(10)^{\circ}.$
	$\gamma = 90^{\circ}$.
Volume	888.76(7) Å ³
Ζ	2
Density (calculated)	1.770 Mg/m ³
Absorption coefficient	1.372 mm ⁻¹
F(000)	476
Crystal size	0.30 x 0.25 x 0.20 mm ³
Theta range for data collection	2.382 to 32.639°.
	-17<=h<=17,
Index ranges	-13<=k<=13, 12<-1<-12
Reflections collected	6959
Independent reflections	1717 [R(int) = 0.0199]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.777 and 0.666
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1717/0/68
Goodness-of-fit on F2	1.069
Final R indices [for 1712 rflns with $I > 2\sigma(I)$]	R1 = 0.0217, wR2 = 0.0555
R indices (all data)	R1 = 0.0217, wR2 = 0.0555
Extinction coefficient	n/a
Largest diff. peak and hole	1.607 and -1.416 e.Å ⁻³

Atom	Х	У	Z	U(eq)*
Pd(1)	5000	5000	0	12(1)
O(1)	4062(1)	3372(1)	900(1)	17(1)
O(2)	1699(2)	5000	4521(2)	32(1)
C(1)	3160(1)	3593(2)	1715(2)	15(1)
C(2)	2687(2)	5000	2102(2)	15(1)
C(3)	2610(1)	2172(2)	2289(2)	21(1)
C(4)	1619(2)	5000	3109(2)	18(1)
C(5)	480(2)	5000	2293(3)	25(1)
Cl(1)	5000	6666(1)	5000	34(1)
C(6)	5543(3)	5000	4329(5)	20(1)

Table S5. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for **Pd(acpd)**₂.

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S6. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å² × 10³) for **Pd(acpd)**₂.

Atom	х	У	Z	U(iso)
H(3A)	2849	1328	1630	31
H(3B)	1776	2277	2239	31
H(3C)	2845	1985	3373	31
H(5A)	-120	5000	3056	38
H(5B)	416	5881	1651	38
H(6A)	6349	5000	4549	24
H(6B)	5459	5000	3212	24

Table S7. Bond lengths [Å] and angles [°] for Pd(acpd)₂.

Pd(1)-O(1)	1.9741(10)	C(3)-H(3C)	0.98
O(1)-C(1)	1.2808(15)	C(4)-C(5)	1.501(3)
O(2)-C(4)	1.211(3)	C(5)-H(5A)	0.9599
C(1)-C(2)	1.4076(15)	C(5)-H(5B)	0.9601
C(1)-C(3)	1.5014(19)	Cl(1)-C(6)	1.712(2)
C(2)-C(4)	1.519(3)	C(6)-H(6A)	0.96
C(3)-H(3A)	0.98	C(6)-H(6B)	0.96
C(3)-H(3B)	0.98		
O(1)-Pd(1)-O(1)#1	94.34(6)	H(3A)-C(3)-H(3C)	109.5
O(1)-Pd(1)-O(1)#2	85.66(6)	H(3B)-C(3)-H(3C)	109.5
C(1)-O(1)-Pd(1)	123.97(9)	O(2)-C(4)-C(5)	121.91(19)
O(1)-C(1)-C(2)	126.09(13)	O(2)-C(4)-C(2)	120.33(18)
O(1)-C(1)-C(3)	113.77(12)	C(5)-C(4)-C(2)	117.76(18)
C(2)-C(1)-C(3)	120.14(12)	C(4)-C(5)-H(5A)	109.5
C(1)-C(2)-C(1)#1	125.44(16)	C(4)-C(5)-H(5B)	109.5
C(1)-C(2)-C(4)	117.22(8)	H(5A)-C(5)-H(5B)	109.5
C(1)-C(3)-H(3A)	109.5	Cl(1)#3-C(6)-Cl(1)	119.9(2)
C(1)-C(3)-H(3B)	109.5	Cl(1)-C(6)-H(6A)	107.4
H(3A)-C(3)-H(3B)	109.5	Cl(1)-C(6)-H(6B)	107.3
C(1)-C(3)-H(3C)	109.5	H(6A)-C(6)-H(6B)	106.9

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1, z #2 -x+1, y, -z #3 -x+1, -y+1, -z+1

	1 101 - a(aepa)2.
Pd(1)-O(1)-C(1)-C(2)	0.1(2)
Pd(1)-O(1)-C(1)-C(3)	-179.04(9)
O(1)-C(1)-C(2)-C(1)#1	-3.1(3)
C(3)-C(1)-C(2)-C(1)#1	175.99(13)
O(1)-C(1)-C(2)-C(4)	-178.96(14)
C(3)-C(1)-C(2)-C(4)	0.2(2)
C(1)-C(2)-C(4)-O(2)	88.09(14)
C(1)-C(2)-C(4)-C(5)	-91.91(14)

Table S8. Torsion angles [°] for Pd(acpd)₂

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1, z #2 -x+1, y, -z #3 -x+1, -y+1, -z+1

Atom	U11	U22	U 33	U23	U13	U12
Pd(1)	13(1)	11(1)	12(1)	0	2(1)	0
O(1)	18(1)	14(1)	19(1)	1(1)	5(1)	-1(1)
O(2)	24(1)	55(1)	19(1)	0	5(1)	0
C(1)	15(1)	15(1)	14(1)	1(1)	0(1)	-1(1)
C(2)	13(1)	16(1)	15(1)	0	2(1)	0
C(3)	20(1)	17(1)	24(1)	3(1)	4(1)	-3(1)
C(4)	15(1)	18(1)	20(1)	0	3(1)	0
C(5)	15(1)	30(1)	31(1)	0	-1(1)	0
Cl(1)	37(1)	30(1)	36(1)	0	-6(1)	0
C(6)	18(2)	25(2)	17(2)	0	2(1)	0

Table S9. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **Pd(acpd)**₂.

The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

$Pd(tfpd)_2$

Identification code	Pd(tfpd) ₂		
Empirical formula	$C_{10}H_8F_6O_4Pd$		
Formula weight	412,56		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 4.7881(8) Å		
	b = 7.9629(13) Å		
	c = 8.7923(15) Å		
	$\alpha = 80.994(3)^{\circ}.$		
	$\beta = 77.330(3)^{\circ}.$		
	$\gamma = 72.621(3)^{\circ}.$		
Volume	310.64(9) Å ³		
Ζ	1		
Density (calculated)	2.205 Mg/m ³		
Absorption coefficient	1.584 mm ⁻¹		
F(000)	200		
Crystal size	0.20 x 0.15 x 0.15 mm ³		
Theta range for data collection	2.386 to 32.596°.		
Index ranges	-7<=h<=7, -11<=k<=12, -13<=l<=13		
Reflections collected	4832		
Independent reflections	2252 [R(int) = 0.0296]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.777 and 0.737		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2252 / 0 / 98		
Goodness-of-fit on F2	1.031		
Final R indices [for 2196 rflns with I>2σ(I)]	R1 = 0.0307, wR2 = 0.0585		
R indices (all data)	R1 = 0.0321, $wR2 = 0.0593$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.928 and -1.474 e.Å ⁻³		

Table S10. Crystal data and structure refinement for Pd(tfpd)₂

Atom x		У	Z	U(eq)*	
Pd(1)	Pd(1) 0		5000	10(1)	
F(1)	F(1) 2639(3)		464(2)	24(1)	
F(2)	5104(3)	8889(2)	1995(2)	25(1)	
F(3)	7337(3)	7088(2)	239(2)	29(1)	
O(1)	1616(3)	6651(2)	3368(2)	14(1)	
O(2)	3449(3)	2921(2)	4515(2)	14(1)	
C(1)	4114(5)	6109(3)	2456(2)	12(1)	
C(2)	6099(5)	4456(3)	2424(2)	14(1)	
C(3)	5711(4)	2955(3)	3456(2)	12(1)	
C(4)	4821(5)	7614(3)	1276(3)	16(1)	
C(5)	8147(5)	1266(3)	3336(3)	16(1)	

Table S11. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for Pd(tfpd)₂.

* U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S12. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for Pd(tfpd)₂.

Atom	Х	У	Z	U(iso)
H(2)	I(2) 7864		1653	17
H(5A)	7365	281	3873	23
H(5B)	H(5B) 9754		3827	23
H(5C)	H(5C) 8920		2231	23

Table S13. Bond lengths [Å] and angles [°] for Pd(tfpd)₂.

Ū.		· · · · · · · · · · · · · · · · · · ·	
Pd(1)-O(1)	1.9785(15)	C(1)-C(4)	1.525(3)
Pd(1)-O(2)	1.9819(15)	C(2)-C(3)	1.416(3)
F(1)-C(4)	1.331(3)	C(2)-H(2)	0.95
F(2)-C(4)	1.330(3)	C(3)-C(5)	1.495(3)
F(3)-C(4)	1.339(2)	C(5)-H(5A)	0.98
O(1)-C(1)	1.281(2)	C(5)-H(5B)	0.98
O(2)-C(3)	1.268(2)	C(5)-H(5C)	0.98
C(1)-C(2)	1.374(3)		
O(1)#1-Pd(1)-O(1)	180	C(1)-C(2)-H(2)	117.5
O(1)-Pd(1)-O(2)	94.81(6)	C(3)-C(2)-H(2)	117.5
C(1)-O(1)-Pd(1)	120.84(13)	O(2)-C(3)-C(2)	125.18(19)
C(3)-O(2)-Pd(1)	124.40(14)	O(2)-C(3)-C(5)	116.03(18)
O(1)-C(1)-C(2)	129.80(19)	C(2)-C(3)-C(5)	118.78(18)
O(1)-C(1)-C(4)	110.77(17)	F(2)-C(4)-F(1)	107.28(18)
C(2)-C(1)-C(4)	119.42(18)	F(2)-C(4)-F(3)	107.54(18)
C(1)-C(2)-C(3)	124.92(19)	F(1)-C(4)-F(3)	107.14(18)
F(2)-C(4)-C(1)	111.04(18)	H(5A)-C(5)-H(5B)	109.5
F(1)-C(4)-C(1)	110.68(17)	C(3)-C(5)-H(5C)	109.5
F(3)-C(4)-C(1)	112.90(18)	H(5A)-C(5)-H(5C)	109.5
C(3)-C(5)-H(5A)	109.5	H(5B)-C(5)-H(5C)	109.5
C(3)-C(5)-H(5B)	109.5		

Symmetry transformations used to generate equivalent atoms: #1 -x, -y+1, -z+1

Pd(1)-O(1)-C(1)-C(2)	-2.2(3)
Pd(1)-O(1)-C(1)-C(4)	178.32(13)
O(1)-C(1)-C(2)-C(3)	0.3(4)
C(4)-C(1)-C(2)-C(3)	179.8(2)
Pd(1)-O(2)-C(3)-C(2)	-2.0(3)
Pd(1)-O(2)-C(3)-C(5)	176.72(13)
C(1)-C(2)-C(3)-O(2)	2.1(4)
C(1)-C(2)-C(3)-C(5)	-176.6(2)
O(1)-C(1)-C(4)-F(2)	62.7(2)
C(2)-C(1)-C(4)-F(2)	-116.9(2)
O(1)-C(1)-C(4)-F(1)	-56.4(2)
C(2)-C(1)-C(4)-F(1)	124.1(2)
O(1)-C(1)-C(4)-F(3)	-176.48(18)
C(2)-C(1)-C(4)-F(3)	4.0(3)

 Table S14.
 Torsion angles [°] for Pd(tfpd)₂.

Symmetry transformations used to generate equivalent atoms: #1 -x, -y+1, -z+1

Table S15. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Pd(tfpd)₂.

Atom	U11	U22	U33	U23	U13	U12
Pd(1)	9(1)	9(1)	10(1)	1(1)	0(1)	-3(1)
F(1)	25(1)	28(1)	18(1)	9(1)	-8(1)	-9(1)
F(2)	35(1)	20(1)	25(1)	0(1)	-5(1)	-16(1)
F(3)	25(1)	24(1)	28(1)	2(1)	14(1)	-5(1)
O(1)	13(1)	12(1)	14(1)	1(1)	2(1)	-4(1)
O(2)	13(1)	13(1)	14(1)	-1(1)	0(1)	-2(1)
C(1)	14(1)	14(1)	10(1)	-1(1)	-1(1)	-6(1)
C(2)	13(1)	15(1)	13(1)	-1(1)	1(1)	-4(1)
C(3)	12(1)	14(1)	12(1)	-4(1)	-3(1)	-3(1)
C(4)	14(1)	16(1)	14(1)	-1(1)	1(1)	-4(1)
C(5)	14(1)	14(1)	16(1)	-2(1)	-2(1)	0(1)

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

NMR spectra of synthesized complexes ----5.41 ~7.35 ~7.26 ---1.54 o Pd Q 2 CHCl, H₂O C_6H_{61} 7 3 9 8 6 5 2 14 13 12 11 10 4 i ppm 1.98 12.00 0.02 0.04 Figure S4. ¹H NMR spectrum of Pd(acac)₂ in CDCl₃. 101.70 187.34 77.41 77.16 76.91 25.57 CDCl₃ 1 3 2

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure S5. ¹³C NMR spectrum of Pd(acac)₂ in CDCl₃.

Figure S7. ¹³C NMR spectrum of Pd(acpd)₂ in CDCl₃.

Figure S9. ¹³C NMR spectrum of Pd(tfpd)₂ in CDCl₃.

S17

Figure S11. ¹H NMR spectrum of Pd(hfpd)₂ in CDCl₃.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure S12. 13 C NMR spectrum of Pd(hfpd)₂ in CDCl₃.

ESI-MS spectra of synthesized complexes

Figure S14. Expanded ESI-MS spectrum of individual ion (Pd(acac)₂ solution in CH₃CN). Experimental MS (top) and $[Pd(acac)_2 + Na]^+$ calculated MS (bottom).

Figure S15. Expanded ESI-MS spectrum of individual ion $(Pd(acpd)_2 \text{ solution in CH}_3CN)$. Experimental MS (top) and $[Pd(acpd)_2 + Na]^+$ calculated MS (bottom).

Figure S16. Expanded ESI-MS spectrum of individual ion $(Pd(tfpd)_2 \text{ solution in } CH_3CN)$. Experimental MS (top) and $[Pd(tfpd)_2 + Na]^+$ calculated MS (bottom).

Figure S17. Expanded ESI-MS spectrum of individual ion $(Pd(hfpd)_2 \text{ solution in } CH_3CN)$. Experimental MS (top) and $[Pd(hfpd)_2 + NaOH + Na]^+$ calculated MS (bottom).

Characterization of the thiol-yne reaction products

2-methyl-3-(phenylthio)but-3-en-2-ol (3a)

¹H NMR (400 MHz, CDCl₃) δ ppm: 7.52 - 7.44 (m, 2H), 7.39 - 7.27 (m, 3H), 5.47 (d, J = 0.6 Hz, 1H), 4.73 (d, J = 0.6 Hz, 1H), 2.16 (br s, 1H), 1.52 (s, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ ppm: 153.9, 132.8, 132.6, 128.4, 127.1, 109.8, 73.1, 28.8. ESI-MS: $[M + Ag]^+$ calcd for C₁₁H₁₄OSAg⁺ *m/z* 300.9811, found *m/z* 300.9801 (Δ = 3.3 ppm).

2-methyl-3-(o-tolylthio)but-3-en-2-ol (3b)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.50 (d, *J* = 7.4 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.23 – 7.16 (m, 1H), 5.27 (s, 1H), 4.30 (s, 1H), 2.41 (s, 3H), 1.99 (br s, 1H), 1.55 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 154.3, 142.2, 136.1, 131.7, 130.9, 129.2, 127.0, 106.6, 74.1, 29.9, 20.5.

ESI-MS: $[M + Ag]^+$ calcd for $C_{12}H_{16}OSAg^+ m/z$ 314.9967, found m/z 314.9969 ($\Delta = 0.6$ ppm).

2-methyl-3-(m-tolylthio)but-3-en-2-ol (3c)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.33 – 7.19 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 1H), 5.45 (s, 1H), 4.73 (s, 1H), 2.34 (s, 3H), 2.08 (br s, 1H), 1.52 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 155.0, 139.2, 134.3, 133.4, 130.7, 129.2, 129.0, 110.5, 74.1, 29.8, 21.4.

ESI-MS: $[M + Ag]^+$ calcd for $C_{12}H_{16}OSAg^+ m/z$ 314.9967, found m/z 314.9975 ($\Delta = 2.5$ ppm).

2-methyl-3-(p-tolylthio)but-3-en-2-ol (3d)

OH

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.37 (d, *J* = 8.0 Hz,2H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.38 (s, 1H), 4.63 (s, 1H), 2.35 (s, 3H), 2.02 (br s, 1H), 1.51 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 155.8, 138.5, 134.3, 130.3, 129.8, 109.2, 74.0, 29.9, 21.3. ESI-MS: $[M + H]^+$ calcd for C₁₂H₁₇OS⁺ *m/z* 209.0995, found *m/z* 209.0997 (Δ = 1.0 ppm).

3-((2,4-dimethylphenyl)thio)-2-methylbut-3-en-2-ol (3e)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.38 (d, *J* = 7.8 Hz, 1H), 7.11 (s, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 5.21 (s, 1H), 4.24 (s, 1H), 2.37 (s, 3H), 2.33 (s, 3H), 1.96 (br s, 1H), 1.55 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 154.8, 142.3, 139.5, 136.5, 131.8, 127.84, 127.79, 105.4, 74.1, 30.0, 21.3, 20.4.

ESI-MS: $[M + Ag]^+$ calcd for $C_{13}H_{18}OSAg^+ m/z$ 329.0124, found m/z 329.0131 ($\Delta = 2.1$ ppm).

3-((2-fluorophenyl)thio)-2-methylbut-3-en-2-ol (3f)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.56 – 7.45 (m, 1H), 7.40 – 7.29 (m, 1H), 7.18 – 7.05 (m, 2H), 5.40 (s, 1H), 4.61 (s, 1H), 1.99 (br s, 1H), 1.54 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 162.4 (d, *J* = 248.6 Hz), 153.5, 136.5, 130.9 (d, *J* = 8.0 Hz), 124.9 (d, *J* = 3.9 Hz), 120.7 (d, *J* = 18.2 Hz), 116.4 (d, *J* = 22.8 Hz), 109.6, 74.1, 29.8.

¹⁹F NMR (471 MHz, CDCl₃) δ ppm: -107.3 – -107.4 (m).

ESI-MS: $[M + Ag]^+$ calcd for $C_{11}H_{13}FOSAg^+ m/z$ 318.9717, found m/z 318.9713 ($\Delta = 1.3$ ppm).

3-((3-fluorophenyl)thio)-2-methylbut-3-en-2-ol (3g)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.35 – 7.13 (m, 3H), 7.02 – 6.92 (m, 1H), 5.61 (d, *J* = 0.5 Hz, 1H), 4.93 (d, *J* = 0.5 Hz, 1H), 2.03 (br s, 1H), 1.50 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 163.0 (d, J = 249.0 Hz), 153.4, 136.7 (d, J = 7.8 Hz), 130.6 (d, J = 8.4 Hz), 128.1 (d, J = 3.1 Hz), 119.3 (d, J = 22.5 Hz), 114.8 (d, J = 21.2 Hz), 113.9, 74.2, 29.7. ¹⁹F NMR (471 MHz, CDCl₃) δ ppm: -112.2 (td, J = 8.7, 6.1 Hz).

ESI-MS: $[M + H]^+$ calcd for $C_{11}H_{14}FOS^+ m/z$ 211.0587, found m/z 211.0578 ($\Delta = 4.3$ ppm).

3-((4-fluorophenyl)thio)-2-methylbut-3-en-2-ol (3h)

¹H NMR (500 MHz, CDCl₃) δ ppm: 7.49 – 7.40 (m, 2H), 7.09 – 7.01 (m, 2H), 5.38 (s, 1H), 4.57 (s, 1H), 2.00 (br s, 1H), 1.51 (s, 6H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ ppm: 163.0 (d, J = 248.7 Hz), 155.8, 136.4 (d, J = 8.3 Hz), 128.5 (d, J = 3.3 Hz), 116.7 (d, J = 21.9 Hz), 109.2, 74.1, 29.9.

¹⁹F NMR (471 MHz, CDCl₃) δ ppm: -113.0 – -113.2 (m).

ESI-MS: $[M + H]^+$ calcd for $C_{11}H_{14}FOS^+ m/z$ 211.0587, found m/z 211.0579 ($\Delta = 3.8$ ppm).

3-((4-chlorophenyl)thio)-2-methylbut-3-en-2-ol (3i)

¹H NMR (400 MHz, CDCl₃) δ ppm: 7.43 – 7.36 (m, 2H), 7.35 – 7.28 (m, 2H), 5.48 (s, 1H), 4.73 (s, 1H), 1.98 (br s, 1H), 1.50 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 154.6, 134.8, 134.3, 132.6, 129.6, 111.4, 74.1, 29.8. ESI-MS: $[M + Ag]^+$ calcd for C₁₁H₁₃ClOSAg⁺ *m/z* 334.9421, found *m/z* 334.9411 (Δ = 3.0 ppm).

3-((4-bromophenyl)thio)-2-methylbut-3-en-2-ol (3j)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.50 – 7.42 (m, 2H), 7.36 – 7.29 (m, 2H), 5.50 (d, *J* = 0.5 Hz, 1H), 4.77 (d, *J* = 0.5 Hz, 1H), 1.98 (br s, 1H), 1.50 (s, 6H).

¹³C NMR {¹H} (75 MHz, CDCl₃) δ ppm: 154.4, 134.9, 133.2, 132.6, 122.3, 111.9, 74.1, 29.8. ESI-MS: $[M + Ag]^+$ calcd for $C_{11}H_{13}BrOSAg^+ m/z$ 378.8916, found m/z 378.8921 (Δ = 1.3 ppm).

3-((3-methoxyphenyl)thio)-2-methylbut-3-en-2-ol (3l)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.25 (t, *J* = 7.9 Hz, 1H), 7.09 – 6.98 (m, 2H), 6.84 (dd, *J* = 8.3, 2.5 Hz, 1H), 5.51 (s, 1H), 4.84 (s, 1H), 3.80 (s, 3H), 2.07 (br s, 1H), 1.51 (s, 6H).

¹³C {¹H} NMR (75 MHz, CDCl₃) δ ppm: 160.2, 154.3, 135.1, 130.1, 125.5, 118.4, 113.9, 111.9, 74.1, 55.5, 29.8.

ESI-MS: $[M + Ag]^+$ calcd for $C_{12}H_{16}O_2SAg^+ m/z$ 330.9946, found m/z 330.9953 ($\Delta = 2.1$ ppm).

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.65 – 7.54 (m, 2H), 7.35 – 7.28 (m, 3H), 5.73 (d, *J* = 0.8 Hz, 1H), 4.95 (d, *J* = 0.9 Hz, 1H), 2.02 (br s, 1H), 1.51 (s, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 153.4, 135.2, 129.8, 129.5, 128.1, 114.1, 74.7, 29.9. ESI-MS: $[M + Ag]^+$ calcd for C₁₁H₁₄OSeAg⁺ *m/z* 348.9254, found *m/z* 348.9258 (Δ = 1.1 ppm).

3-methyl-2-(phenylthio)pent-1-en-3-ol (3n)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.54 – 7.44 (m, 2H), 7.40 – 7.30 (m, 3H), 5.39 (d, J = 0.6 Hz, 1H), 4.71 (d, J = 0.6 Hz, 1H), 1.91 (br s, 1H), 1.88 – 1.69 (m, 2H), 1.46 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 153.7, 134.2, 133.4, 129.4, 128.3, 110.6, 76.6, 34.2, 27.7, 8.3. ESI-MS: [M + H]⁺ calcd for C₁₂H₁₇OS⁺ m/z 209.0995, found m/z 209.0998 ($\Delta = 1.4$ ppm).

3,5-dimethyl-2-(phenylthio)hex-1-en-3-ol (30)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.52 – 7.45 (m, 2H), 7.40 – 7.30 (m, 3H), 5.42 (d, *J* = 0.5 Hz, 1H), 4.68 (s, 1H), 1.89 – 1.59 (m, 4H), 1.48 (s, 3H), 1.03 – 0.96 (m, 6H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 154.6, 134.3, 133.4, 129.5, 128.3, 110.0, 77.0, 49.9, 29.2, 24.7, 24.6.

ESI-MS: $[M + H]^+$ calcd for $C_{14}H_{21}OS^+ m/z$ 237.1308, found m/z 237.1305 ($\Delta = 1.3$ ppm).

3,4,4-trimethyl-2-(phenylthio)pent-1-en-3-ol (3p)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.50 – 7.41 (m, 2H), 7.38 – 7.28 (m, 3H), 5.37 (d, *J* = 0.4 Hz, 1H), 4.95 (s, 1H), 2.16 (br s, 1H), 1.49 (s, 3H), 1.07 (s, 9H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 152.9, 134.9, 133.3, 129.4, 128.0, 115.3, 80.3, 38.5, 26.2, 24.8. ESI-MS: $[M + H]^+$ calcd for C₁₄H₂₁OS⁺ *m/z* 237.1301, found *m/z* 237.1291 (Δ = 4.2 ppm).

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.52 - 7.42 (m, 2H), 7.40 - 7.28 (m, 3H), 5.50 (s, 1H), 4.79 (s, 1H), 2.01 - 1.39 (m, 10H), 1.26 (m, 1H).

¹³C NMR{¹H} (75 MHz, CDCl₃) δ ppm: 155.2, 134.2, 133.5, 129.4, 128.0, 111.7, 74.8, 37.0, 25.6, 22.1. ESI-MS: $[M + H]^+$ calcd for C₁₄H₁₉OS⁺ *m/z* 235.1151, found *m/z* 235.1149 (Δ = 0.9 ppm).

(3,3-dimethylbut-1-en-2-yl)(phenyl)sulfane (3r)

¹H NMR (500 MHz, CDCl3) δ ppm: 7.53 – 7.45 (m, 2H), 7.36 – 7.27 (m, 3H), 5.24 (s, 1H), 4.62 (s, 1H), 1.26 (s, 9H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 157.5, 134.8, 133.9, 129.3, 127.8, 109.7, 38.2, 30.0. ESI-MS: $[M + Ag]^+$ calcd for C₁₂H₁₆SAg⁺ *m/z* 299.0018, found *m/z* 299.0026 (Δ = 2.7 ppm).

phenyl(1-phenylvinyl)sulfane (3s)

¹H NMR (300 MHz, CDCl₃) δ ppm: 7.71 – 7.58 (m, 2H), 7.44 – 7.37 (m, 2H), 7.34 – 7.20 (m, 6H), 5.67 (s, 1H), 5.31 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ ppm: 144.7, 138.9, 134.0, 132.1, 129.2, 128.6, 128.4, 127.5, 127.3, 116.0.

ESI-MS: $[M + Ag]^+$ calcd for $C_{14}H_{12}SAg^+ m/z$ 318.9705, found m/z 318.9706 ($\Delta = 0.3$ ppm).

NMR spectra of the thiol-yne reaction products

Figure S19. ¹³C NMR spectrum of 3a in CDCl₃.

Figure S21. ¹³C NMR spectrum of 3b in CDCl₃.

Figure S23. ¹³C NMR spectrum of 3c in CDCl₃.

Figure S24. ¹H NMR spectrum of 3d in CDCl₃.

Figure S25. ¹³C NMR spectrum of 3d in CDCl₃.

Figure S26. ¹H NMR spectrum of 3e in CDCl₃.

Figure S27. ¹³C NMR spectrum of 3e in CDCl₃.

Figure S28. ¹H NMR spectrum of 3f in CDCl₃.

Figure S29. ¹³C NMR spectrum of 3f in CDCl₃.

Figure S30. ¹⁹F NMR spectrum of 3f in CDCl₃.

Figure S31. ¹H NMR spectrum of 3g in CDCl₃.

Figure S32. ¹³C NMR spectrum of 3g in CDCl₃.

Figure S33. ¹⁹F NMR spectrum of 3g in CDCl₃.

Figure S35. ¹³C NMR spectrum of **3h** in CDCl₃.

Figure S36. ¹⁹F NMR spectrum of 3h in CDCl₃.

Figure S38. ¹³C NMR spectrum of 3i in CDCl₃.

Figure S40. ¹³C NMR spectrum of 3j in CDCl₃.

Figure S41. ¹H NMR spectrum of 3l in CDCl₃.

Figure S42. ¹³C NMR spectrum of 3l in CDCl₃.

Figure S44. ¹³C NMR spectrum of 3m in CDCl₃.

Figure S45. ¹H NMR spectrum of **3n** in CDCl₃.

Figure S46. ¹³C NMR spectrum of **3n** in CDCl₃.

Figure S47. ¹H NMR spectrum of 30 in CDCl₃.

Figure S48. ¹³C NMR spectrum of 30 in CDCl₃.

Figure S50. ¹³C NMR spectrum of **3p** in CDCl₃.

Figure S51. ¹H NMR spectrum of 3q in CDCl₃.

Figure S52. ¹³C NMR spectrum of 3q in CDCl₃.

Figure S54. ¹³C NMR spectrum of 3r in CDCl₃.

Figure S55. ¹H NMR spectrum of 3s in CDCl₃.

Figure S56. ¹³C NMR spectrum of 3s in CDCl₃.

S48

References

- 1 A. A. Grinberg and L. K. Simonova, Zhurnal Prikladnoi Khimii, 1953, 26, 880-882.
- 2 M. Basato, E. Caneva, C. Tubaro and A. C. Veronese, Inorg. Chim. Acta, 2009, 362, 2551–2555.
- 3 E. S. Degtyareva, J. V. Burykina, A. N. Fakhrutdinov, E. G. Gordeev, V. N. Khrustalev and V. P. Ananikov, *ACS Catal.*, 2015, **5**, 7208–7213.
- 4 H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe and N. Sonoda, J. Am. Chem. Soc., 1992, 114, 5902–5903.
- 5 G. M. Sheldrick, SADABS-v. 2.03– Bruker–Siemens Area Detector Absorption Correction Program– Bruker AXS Inc.
- 6 G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.