Supporting Information

Rhenium-Modified Porous Covalent Triazine Framework for Highly Efficient Photocatalytic Carbon Dioxide Reduction in Solid-Gas System

Rui Xu,^{ab} Xusheng Wang,^{ab} Hui Zhao,^a Hua Lin,^a Yuan-Biao Huang^{*a} and Rong Cao^{*a}

Fig. S1 IR spectrum of CTF-py and monomer (2,6-dicyanopyridine).

Fig. S2 (a-c) XPS survey, N 1s spectra of monomer, CTF-py, and Re-CTF-py.

Fig. S3 PXRD of CTF-py and Re-CTF-py.

Fig. S4 UV-Vis absorbance spectra of Re-CTF-py, CTF-py, DCP (momomer) and Re(CO) $_5$ Cl.

Fig. S5 Photoluminescence spectra of CTF-py and Re-CTF-py under 508 nm excitation at room temperature.

Fig. S6 EIS Nyquist plots obtained at an AC voltage with an amplitude of 5 mV over the frequency range from 10^5 to 10^{-1} Hz for monomer, CTF-py and Re-CTF-py.

Fig. S7 Solid-gas system.

Fig. S8 The photocatalytic CH4 and CO evolution rate of Re-CTF-py in different condition.

Fig. S9 Time course of CO evolution in different reaction condition. General reaction condition: 2 mg catalyst, 2 mL mixed solution of MeCN/TEOA (4/1), 0.8 atm CO_2 , 10 h.

Fig. S10 TON of CO evolution over Re-CTF-py, Re(CO)₅Cl and the physical mixture of CTF-py and Re(CO)₅Cl (Re & CTF-py) in solid-gas system.

Fig. S11 Photocatalytic activity of Re-bpy and Re-CTF-py in solid-gas and liquid-gas systems.

Fig. S12 IR spectrum of Re-CTF-py in different condition: before reaction, after solidliquid reaction and after solid-gas reaction.

Fig. S13 Recycle of Re-CTF-py in solid-liquid system. Reaction conditions: 2 mg catalyst, 20mL mixed solution of MeCN/TEOA (4/1), 1 atm CO_2 , 1h.

Fig. S14 Photocatalytic activity of using H_2 or TEOA as a sacrificial agent.

Table S1. C/N fatto of CTF-by and Re content of Re-CTF-by.							
Materials	C/N	Theoretical Re		Theoretical			
		Value (C/N)		Value (Re)			
CTF	3.7	2.3	0%	0%			
Re-CTF	4.0	2.6	13.63%	21.96%			

Table S2. Photocatalytic ability of Re-CTF-py compared to other porous framework system for CO_2 reduction. Re-CTF-py showed much higher TOF values when compared to various heterogeneous systems.

Name	Photosensitize	Solvent	TOF (h⁻¹)	Reference			
	r						
MOF-253-Ru(CO) ₂ Cl	None	MeCN/TEOA	0.363	Chem. Commun.			
				2015, 51, 2645			
NH ₂ -MIL-101(Fe)	None	MeCN/TEOA	0.05	ACS Catal. 2014,			
				4, 4254			
NH ₂ -MIL-53(Fe)	None	MeCN/TEOA	0.013	ACS Catal. 2014,			
				4, 4254			
NH ₂ -MIL-888(Fe)	None	MeCN/TEOA	0.008	ACS Catal. 2014,			
				4, 4254			
${Cd_2[Ru(dcbpy)_3] \cdot 12H_2O}_n$	None	MeCN/TEOA	0.231	J. Mater. Chem. A			
				2015, 3, 15764			
{Cd[Ru(4,4-	None	MeCN/TEOA	0.172	Inorg. Chem. 2015,			
dcbpy) ₂ (bpy)]·3(H ₂ O)} _n				54, 8375			
Re-CTF-py	None	MeCN/TEOA	0.482	This work			