Supporting Information

Cascade and One Pot Dehydrative Amination of Glycerol to Oxazoline

R. Pandya, R. Mane and C. V. Rode*

Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India-411008.

Corrosponding author: E-mail: <u>cv.rode@ncl.res.in</u> Fax: +91 20 2590 2621 Telephone: +91 20 2590 2349

1	Scheme S1. Reaction mechanism for the glycerol amination.	Page 2
2	Table S1. Effect of catalyst on acetol conversion to oxazoline.	Page 3
3	Fig. S1. SEM images of a) Ru/C, b) Ru/SiO_2 and c) Ru/Al_2O_3 catalyst.	Page 4
4	Fig. S2. XPS spectra for a) Ru/C, b) Ru/SiO_2 and c) Ru/Al_2O_3 catalyst.	Page 5
5	Fig. S3. ¹³ C-NMR and ¹ H- NMR of Oxazoline.	Page 6
6	Fig. S4. IR spectra of oxazoline.	Page 7
7	 Fig. S5. XRD patterns of different activated copper catalysts. (*) Cu^o, (#) Cu2O, (+) CuO, (φ) t-ZrO2. 	Page 8
8	Fig. S6. NH ₃ –TPD and Py-IR profiles of different activated copper catalyst	Page 9
9	Fig. S7. Effect of glycerol concentration on dehydrative cyclised	Page 10
	amination reaction.	
10	Fig. S8. Effect of catalyst loading on dehydrative cyclised amination reaction.	Page 11
11	Fig. S9. Reactive distillation set up.	Page 12

Contents

Scheme S1. Reaction mechanism for the glycerol amination.

Table S1. Effect of catalyst on acetol conversion to oxazoline.								
Sr. No.	Con.	Selectivity (%)						
	(%)	Oxazoline	5-methyl	1,2-dimethyl	Dialkyl	Other		
			imidazole	imidazole	Pipirazine			
1 ^a	99	95	3	2	00	00		
2 ^b	88	92	2	1	3	2		

Table ST. Ellect of Calalyst off ac	

Reaction conditions: a With catalyst – Distillate (5 g), 30% aq. NH₃ = 15 mL, 50 °C, catalyst (0.01 g), 2 h. b Without catalyst - Distillate (5 g), 30% aq. NH_3 = 15 mL,, 50 °C, 2 h.

Figure S1. SEM images of a) Ru/AC, b) Ru/SiO₂ and c) Ru/Al₂O₃ catalyst.

Figure S3. ¹³C-NMR and ¹H- NMR of Oxazoline.

¹³C NMR (200MHz, CHLOROFORM-d) δ 14.89, 21.40, 66.6, 76.26, 110.40, 169.14 ¹HMR (200MHz, CHOLOROFORM-d) δ 1.39(CH₃,s,3H), 2.08 (CH₃,s,3H), 3.02(OH,s,1H), 3.64(CH₂,d,2H), 4.58(CH₂,s,2H).

Figure S4. IR spectra of oxazoline.

Figure S6. NH₃–TPD and Py-IR profiles of different activated copper catalysts.

Reaction conditions: 0.8 g Catalyst , 220 °C, 15 mL 30% aq. $NH_3,\,5$ h.

Figure S8. Effect of catalyst loading on dehydrative cyclised amination reaction.

Reaction conditions: 20 wt% glycerol aqueous solution, 220 °C, 15 mL 30% aq. NH₃, 5 h.

Figure S9. Reactive distillation set up.

