Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Catalysis Science & Technology

The relationship between chemical state of Pd species and catalytic

activity of methane combustion on Pd/CeO₂

Jian Ma⁺a, Yang Lou⁺b, Yafeng Cai^a, Zhenyang Zhao^a, Li Wang^{*}a, Wangcheng Zhan^a, Yanglong Guo^a, Yun Guo^{*}a

^a Key Laboratories for Advanced Materials, Research Institute of Industrial Catalysis, East China

University of Science and Technology, Shanghai 200237, P. R. China

^b Department of Physics, Arizona State University, Tempe, Arizona 85287, United States

AUTHOR INFORMATION

*Corresponding Author

Tel/Fax: +86-21-64253703; Email: yunguo@ecust.edu.cn; wangli@ecust.edu.cn

Author Contributions

*: These two authors contributed equally to this paper.

Table of Contents

Fig. S1 Pd 3d XPS spectra of Pd/CeO_2 catalysts after stability test

Fig. S2 Pd 3d XPS spectra of Pd/CeO₂ catalysts with low Pd loading

Fig. S3 Data details for H₂-TPR

Table S1 the peak area for each peak from the H₂-TPR results

Fig. S1 Pd 3d XPS spectra of Pd/CeO₂ catalysts after stability test

Fig. S2 Pd 3d XPS spectra of Pd/CeO₂ catalysts with low Pd loading

Data details for H₂-TPR Calibration by CuO

Fig. S3 H₂-TPR profile for 50 mg of CuO (a); the Peak area of H₂ consumption by CuO with different mass (b).

 H_2 -TPR measurement of CuO with different mass is carried on and the H_2 -TPR profile for 50 mg of CuO is shown in Fig S1(a), then Peak area of H_2 consumption is integrated and shown in Fig S1(b). The relationship of peak area (A) and the mass of CuO (m_{CuO}) follows the equation S1:

$$A = 0.2631 \times m_{CuO}$$
 [S1]

Catalysts	Peak(a)		Peak(\beta)		Peak(\phi)		Peak(y)		Peak(\delta)		Peak(n)	
	T/°C	А	T/°C	А	T/°C	А	T/°C	А	T/°C	А	T/°C	А
Pd/CeO ₂ (HHA)	-12	0.081	-/	-	21	0.886	-	-	171	0.055	682	0.531
Pd/CeO ₂ (FA)	-12	0.033	18	0.157	-	-	53	0.553	177	0.051	678	0.54
Pd/CeO ₂ (IMP)	-11	0.060	31	0.162	-	-	58	0.621	173	0.049	674	0.588
CeO ₂ nanorods	-	-	-	-	-	-	-	-	181	0.65	701	0.653

Table S1 Peak area (A) of each peak from the H₂-TPR results

The peak area of each H_2 consumption peak in Fig. 6 is shown in Table S2. The

relationship of peak area and the H_2 uptake follows the equation S2:

$$H_2 \text{ uptake} = 956 \times A \qquad [S2]$$