Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Homogeneous polymetallic Ruthenium(II)[^]Zinc(II) complexes: Robust catalysts for the efficient hydrogenation of levulinic acid to γ-valerolactone

Gershon Amenuvor, James Darkwa*and Banothile C. E. Makhubela*

Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa.

Supporting Information

Experimental details

J Young NMR tube experiment

The reaction was performed by loading a CDCl₃ solution of pre-catalyst **3** (2.0 μ mol; 5.3 mg), formic acid (30.0 μ mol; 1.1 μ L) and triethyl amine (6.7 μ mol; 6.1 μ L) into a *J Young* NMR tube and heated in an oil bath containing silicon oil at 70 °C. Prior to the heating, the mixture was analyzed by ¹H NMR and ³¹P {¹H} spectroscopy. The NMR analyses of the reaction mixture was repeated at regular intervals in the course of the heating.

Mercury drop test

The mercury drop test or poisoning experiments¹⁻⁴ were performed using LA (10 mmol), FA (10 mmol), pre-catalyst **3** (0.01 mmol), elemental mercury (0.06 mmol; 12 mg) in a high pressure reactor at 120 °C for 4 h. After the reaction time, the reactor was cooled to room temperature and the content depressurized and a sample was taken for ¹H NMR analyses using CDCl₃.

 Table S1: Crystallographic data for complexes 1-3.

Compound	1	2	3
Empirical formula	$C_{29}H_{29}Cl_2O_2PRu\cdot H_2O$	$C_{25}H_{29}Cl_2O_2PRu$	$C_{121}H_{124}Cl_8O_8P_4Ru_4Zn_2\\$

Formula weight	630.48	564.42	2551.55		
Temperature/K	99.98	99.99	100.02		
Crystal system	Monoclinic	monoclinic	monoclinic		
Space group	$P2_{1}/n$	$P2_1/n$	$P2_1/n$		
a/Å	10.0354(5)	10.595(2)	16.387(13)		
b/Å	12.4751(12)	12.873(3)	27.97(2)		
c/Å	22.0590(13)	18.387(4)	26.66(2)		
$\alpha/^{\circ}$	90	90	90		
β/°	93.550(4)	106.74	101.396(15)		
γ/°	90	90	90		
Volume/Å ³	2756.3(3)	2401.4(9)	11980(17)		
Ζ	4	4	4		
$\rho_{calc}g/cm^3$	1.519	1.561	1.415		
μ/mm^{-1}	7.169	0.962	1.169		
Radiation	CuKa (λ = 1.54178)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)		
Theta range for data collection/°	8.032 to 144.818	3.92 to 57.332	2.132 to 38.746		
Reflections collected	39783	16618	45477		
Independent reflections	5435 [$R_{int} = 0.0362$, $R_{sigma} = 0.0192$]	5026 [$R_{int} = 0.1040$, $R_{sigma} = 0.2111$]	$R_{sigma} = 0.1485$ [R _{int} = 0.1918]		
Data/restraints/parameters	5435/3/341	5026/0/287	10056/132/729		
Goodness-of-fit on F ²	1.043	0.577	1.007		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0251, WR_2 = 0.0623$	$R_1 = 0.0420, WR_2 = 0.0624$	$R_1 = 0.0811, WR_2 = 0.2024$		
Final R indexes [all data]	$R_1 = 0.0279, WR_2 = 0.0640$	$=R_1 = 0.0874, WR_2 = 0.0715$	$R_1 = 0.1648, WR_2 = 0.2564$		

Figure S1: ¹H NMR spectrum of 1. (400 MHz, CDCl₃, 298 K).

Figure S2: ³¹P {¹H} NMR spectrum of 1. (400 MHz, CDCl₃, 298 K).

Figure S3: ¹H NMR spectrum of 2. (400 MHz, DMSO-d6, 298 K).

Figure S4: ³¹P {¹H} NMR spectrum of 2. (400 MHz, DMSO-d6, 298 K).

Figure S5: ¹H NMR spectrum of 3. (400 MHz, CDCl₃, 298 K).

Figure S6: ³¹P {¹H} NMR spectrum of **3**. (400 MHz, CDCl₃, 298 K).

Figure S7: ¹H NMR spectrum of 4. (400 MHz, CDCl₃, 298 K).

Figure S8: ³¹P {¹H} NMR spectrum of 4. (400 MHz, CDCl₃, 298 K).

Figure S9: ${}^{31}P$ { ${}^{1}H$ } NMR spectrum of **3** obtained during monitoring of the formation of the active species.

Entry	FA	Base	Conversion	Selectivity	TON	TOF
	(equi.)	(equi.)	(%)	(GVL)		(h -1)
1	1	Et3N (1)	93	95	930	233
2	1.5	Et3N (0.6)	>99	95	990	248
3	1	KOH (0.6)	29	93	290	73

Table S2: Hydrogenation of LA using 3 at additional conditions

Conditions: LA 10 mmol; catalyst precursor 0.01 mmol (0.1 mol%); 120 °C; 4 h. Conversions were determined by from ¹H NMR spectra. (400 MHz, CDCl₃, 298 K)

Figure S10: ¹H NMR spectrum of **3** showing the hydride proton signal and other unique signals of the metal hydride species after the pressure generated was released. (400 MHz, CDCl₃, 298 K).

Figure S11: ¹H NMR spectrum of a crude mixture obtained from hydrogenation of LA with **3**. (400 MHz, MeOD, 298 K).

Figure S12: ³¹P {¹H} NMR spectrum of **3** obtained after 2 h during monitoring of the formation of the active species using molecular hydrogen. (400 MHz, $CDCl_3$, 298 K).

Figure S13: ³¹P {¹H} NMR spectrum of **3** obtained in after 24 h during monitoring of the formation of the active species using molecular hydrogen. (400 MHz, $CDCl_3$, 298 K).

References

- 1. D. R. Anton, R. H. Crabtree. Organometallics, 1983, 2, 855-859.
- 2. P. J. Dyson. Dalt. Trans., 2003, 15 2964-2974.
- 3. C. Zhou, J. Wang, L. Li, R. Wang, M. Hong. Green Chem., 2011, 13, 2100-2106.
- 4. L. C. Matsinha, S. F. Mapolie, G. S. Smith. Dalton Trans., 2015, 44, 1240-1248.